Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's go through the evaluation of the given expression step by step.
The expression to evaluate is:
[tex]\[ \frac{12 - 3 \gamma}{2} + \nu \left( \frac{2v - 4}{\gamma} \right) \][/tex]
Given:
[tex]\[ \gamma = 3 \][/tex]
Now, let's evaluate each part of the expression:
1. Evaluate the first part: [tex]\(\frac{12 - 3 \gamma}{2}\)[/tex]
Substitute [tex]\(\gamma = 3\)[/tex]:
[tex]\[ 12 - 3 \cdot 3 = 12 - 9 = 3 \][/tex]
Now, divide by 2:
[tex]\[ \frac{3}{2} = 1.5 \][/tex]
So, the first part is [tex]\(1.5\)[/tex].
2. Evaluate the second part: [tex]\(\nu \left( \frac{2v - 4}{\gamma} \right)\)[/tex]
We do not have a given value for [tex]\(\nu\)[/tex] or [tex]\(v\)[/tex] in the problem, so let’s assume the values:
[tex]\[ \nu = 1 \quad \text{and} \quad v = 2 \][/tex]
Substitute [tex]\(v = 2\)[/tex] and [tex]\(\gamma = 3\)[/tex]:
[tex]\[ 2 \cdot 2 - 4 = 4 - 4 = 0 \][/tex]
Now, divide by [tex]\(\gamma\)[/tex]:
[tex]\[ \frac{0}{3} = 0 \][/tex]
Then multiply by [tex]\(\nu\)[/tex] (which is 1):
[tex]\[ 1 \cdot 0 = 0 \][/tex]
So, the second part is [tex]\(0\)[/tex].
3. Sum the two parts:
[tex]\[ 1.5 + 0 = 1.5 \][/tex]
Therefore, the value of the expression [tex]\(\frac{12 - 3 \gamma}{2} + \nu \left( \frac{2v - 4}{\gamma} \right)\)[/tex] for [tex]\(\gamma = 3\)[/tex] is:
[tex]\[ 1.5 \][/tex]
The expression to evaluate is:
[tex]\[ \frac{12 - 3 \gamma}{2} + \nu \left( \frac{2v - 4}{\gamma} \right) \][/tex]
Given:
[tex]\[ \gamma = 3 \][/tex]
Now, let's evaluate each part of the expression:
1. Evaluate the first part: [tex]\(\frac{12 - 3 \gamma}{2}\)[/tex]
Substitute [tex]\(\gamma = 3\)[/tex]:
[tex]\[ 12 - 3 \cdot 3 = 12 - 9 = 3 \][/tex]
Now, divide by 2:
[tex]\[ \frac{3}{2} = 1.5 \][/tex]
So, the first part is [tex]\(1.5\)[/tex].
2. Evaluate the second part: [tex]\(\nu \left( \frac{2v - 4}{\gamma} \right)\)[/tex]
We do not have a given value for [tex]\(\nu\)[/tex] or [tex]\(v\)[/tex] in the problem, so let’s assume the values:
[tex]\[ \nu = 1 \quad \text{and} \quad v = 2 \][/tex]
Substitute [tex]\(v = 2\)[/tex] and [tex]\(\gamma = 3\)[/tex]:
[tex]\[ 2 \cdot 2 - 4 = 4 - 4 = 0 \][/tex]
Now, divide by [tex]\(\gamma\)[/tex]:
[tex]\[ \frac{0}{3} = 0 \][/tex]
Then multiply by [tex]\(\nu\)[/tex] (which is 1):
[tex]\[ 1 \cdot 0 = 0 \][/tex]
So, the second part is [tex]\(0\)[/tex].
3. Sum the two parts:
[tex]\[ 1.5 + 0 = 1.5 \][/tex]
Therefore, the value of the expression [tex]\(\frac{12 - 3 \gamma}{2} + \nu \left( \frac{2v - 4}{\gamma} \right)\)[/tex] for [tex]\(\gamma = 3\)[/tex] is:
[tex]\[ 1.5 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.