Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the EMF generated in a solenoid when the magnetic flux changes, we can use Faraday's law of electromagnetic induction. Faraday's law states that the induced electromotive force (EMF) in a coil is directly proportional to the rate of change of magnetic flux through the coil. The formula for EMF is given by:
[tex]\[ \text{EMF} = -N \frac{d\Phi}{dt} \][/tex]
where:
- [tex]\( \text{EMF} \)[/tex] is the electromotive force,
- [tex]\( N \)[/tex] is the number of loops in the solenoid,
- [tex]\( \Phi \)[/tex] (phi) is the magnetic flux,
- [tex]\( \frac{d\Phi}{dt} \)[/tex] is the rate of change of magnetic flux.
Given the data:
- Initial magnetic flux, [tex]\(\Phi_{\text{initial}} = 6.78 \times 10^{-4} \, \text{Wb}\)[/tex]
- Final magnetic flux, [tex]\(\Phi_{\text{final}} = 1.33 \times 10^{-4} \, \text{Wb}\)[/tex]
- Time interval, [tex]\( \Delta t = 0.0333 \, \text{s} \)[/tex]
- Number of loops, [tex]\( N = 605 \)[/tex]
1. Calculate the change in magnetic flux ([tex]\( \Delta \Phi \)[/tex]):
[tex]\[ \Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} \][/tex]
Substitute the given values:
[tex]\[ \Delta \Phi = 1.33 \times 10^{-4} \, \text{Wb} - 6.78 \times 10^{-4} \, \text{Wb} \][/tex]
[tex]\[ \Delta \Phi = -5.45 \times 10^{-4} \, \text{Wb} \][/tex]
2. Determine the rate of change of magnetic flux ([tex]\( \frac{d\Phi}{dt} \)[/tex]):
[tex]\[ \frac{\Delta \Phi}{\Delta t} = \frac{-5.45 \times 10^{-4} \, \text{Wb}}{0.0333 \, \text{s}} \][/tex]
[tex]\[ \frac{\Delta \Phi}{\Delta t} = -0.01637 \, \text{Wb/s} \][/tex]
3. Calculate the EMF generated:
[tex]\[ \text{EMF} = -N \frac{\Delta \Phi}{\Delta t} \][/tex]
Substitute [tex]\( N = 605 \)[/tex] and [tex]\( \frac{\Delta \Phi}{\Delta t} = -0.01637 \, \text{Wb/s} \)[/tex]:
[tex]\[ \text{EMF} = -605 \times (-0.01637 \, \text{Wb/s}) \][/tex]
[tex]\[ \text{EMF} = 9.901 \, \text{Volts} \][/tex]
Therefore, the EMF generated in the solenoid is approximately [tex]\(\boxed{9.901 \, \text{Volts}}\)[/tex].
[tex]\[ \text{EMF} = -N \frac{d\Phi}{dt} \][/tex]
where:
- [tex]\( \text{EMF} \)[/tex] is the electromotive force,
- [tex]\( N \)[/tex] is the number of loops in the solenoid,
- [tex]\( \Phi \)[/tex] (phi) is the magnetic flux,
- [tex]\( \frac{d\Phi}{dt} \)[/tex] is the rate of change of magnetic flux.
Given the data:
- Initial magnetic flux, [tex]\(\Phi_{\text{initial}} = 6.78 \times 10^{-4} \, \text{Wb}\)[/tex]
- Final magnetic flux, [tex]\(\Phi_{\text{final}} = 1.33 \times 10^{-4} \, \text{Wb}\)[/tex]
- Time interval, [tex]\( \Delta t = 0.0333 \, \text{s} \)[/tex]
- Number of loops, [tex]\( N = 605 \)[/tex]
1. Calculate the change in magnetic flux ([tex]\( \Delta \Phi \)[/tex]):
[tex]\[ \Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} \][/tex]
Substitute the given values:
[tex]\[ \Delta \Phi = 1.33 \times 10^{-4} \, \text{Wb} - 6.78 \times 10^{-4} \, \text{Wb} \][/tex]
[tex]\[ \Delta \Phi = -5.45 \times 10^{-4} \, \text{Wb} \][/tex]
2. Determine the rate of change of magnetic flux ([tex]\( \frac{d\Phi}{dt} \)[/tex]):
[tex]\[ \frac{\Delta \Phi}{\Delta t} = \frac{-5.45 \times 10^{-4} \, \text{Wb}}{0.0333 \, \text{s}} \][/tex]
[tex]\[ \frac{\Delta \Phi}{\Delta t} = -0.01637 \, \text{Wb/s} \][/tex]
3. Calculate the EMF generated:
[tex]\[ \text{EMF} = -N \frac{\Delta \Phi}{\Delta t} \][/tex]
Substitute [tex]\( N = 605 \)[/tex] and [tex]\( \frac{\Delta \Phi}{\Delta t} = -0.01637 \, \text{Wb/s} \)[/tex]:
[tex]\[ \text{EMF} = -605 \times (-0.01637 \, \text{Wb/s}) \][/tex]
[tex]\[ \text{EMF} = 9.901 \, \text{Volts} \][/tex]
Therefore, the EMF generated in the solenoid is approximately [tex]\(\boxed{9.901 \, \text{Volts}}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.