Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the domain and range of the function [tex]\( f(x) = \log_5(x-2) + 1 \)[/tex], let's break down the problem step by step.
1. Determining the Domain:
- The logarithmic function [tex]\( \log_b(y) \)[/tex] is defined only for positive values of [tex]\( y \)[/tex]. This means that the argument of the logarithm, [tex]\( (x-2) \)[/tex], must be greater than 0.
- Therefore, the inequality we need to solve is:
[tex]\[ x - 2 > 0 \][/tex]
- Solving this inequality, we get:
[tex]\[ x > 2 \][/tex]
- Hence, the domain of [tex]\( f(x) \)[/tex] is [tex]\( x > 2 \)[/tex].
2. Determining the Range:
- The logarithmic function [tex]\( \log_5(y) \)[/tex] can produce any real number (positive, negative, or zero). When we add 1 to a real number, the result is still a real number.
- Therefore, the expression [tex]\( \log_5(x-2) + 1 \)[/tex] can take any real number value.
- Thus, the range of [tex]\( f(x) \)[/tex] is all real numbers.
Based on this information:
- The domain is [tex]\( x > 2 \)[/tex].
- The range is all real numbers.
The correct answer from the options provided is:
D. domain: [tex]\( x > 2 \)[/tex]; range: all real numbers
1. Determining the Domain:
- The logarithmic function [tex]\( \log_b(y) \)[/tex] is defined only for positive values of [tex]\( y \)[/tex]. This means that the argument of the logarithm, [tex]\( (x-2) \)[/tex], must be greater than 0.
- Therefore, the inequality we need to solve is:
[tex]\[ x - 2 > 0 \][/tex]
- Solving this inequality, we get:
[tex]\[ x > 2 \][/tex]
- Hence, the domain of [tex]\( f(x) \)[/tex] is [tex]\( x > 2 \)[/tex].
2. Determining the Range:
- The logarithmic function [tex]\( \log_5(y) \)[/tex] can produce any real number (positive, negative, or zero). When we add 1 to a real number, the result is still a real number.
- Therefore, the expression [tex]\( \log_5(x-2) + 1 \)[/tex] can take any real number value.
- Thus, the range of [tex]\( f(x) \)[/tex] is all real numbers.
Based on this information:
- The domain is [tex]\( x > 2 \)[/tex].
- The range is all real numbers.
The correct answer from the options provided is:
D. domain: [tex]\( x > 2 \)[/tex]; range: all real numbers
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.