Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To express [tex]\(\log _3(\sqrt[5]{x} \cdot y)\)[/tex] as a sum or difference, we need to use the properties of logarithms. Let's break this down step-by-step:
1. Identify the expression inside the logarithm:
[tex]\(\log_3(\sqrt[5]{x} \cdot y)\)[/tex]
2. Utilize the properties of logarithms:
- The product rule for logarithms: [tex]\(\log_b(a \cdot c) = \log_b(a) + \log_b(c)\)[/tex]
- The power rule for logarithms: [tex]\(\log_b(a^n) = n \cdot \log_b(a)\)[/tex]
3. First, handle the product inside the logarithm:
[tex]\[ \log_3(\sqrt[5]{x} \cdot y) = \log_3(\sqrt[5]{x}) + \log_3(y) \][/tex]
4. Deal with the root in the first logarithm term:
The root [tex]\(\sqrt[5]{x}\)[/tex] can be rewritten as [tex]\(x^{1/5}\)[/tex], so:
[tex]\[ \log_3(\sqrt[5]{x}) = \log_3(x^{1/5}) \][/tex]
5. Apply the power rule to the first term:
[tex]\[ \log_3(x^{1/5}) = \frac{1}{5} \log_3(x) \][/tex]
6. Combine the results:
[tex]\[ \log_3(\sqrt[5]{x} \cdot y) = \frac{1}{5} \log_3(x) + \log_3(y) \][/tex]
Therefore, the correct answer is:
A. [tex]\(\frac{1}{5} \log_3 x + \log_3 y\)[/tex]
1. Identify the expression inside the logarithm:
[tex]\(\log_3(\sqrt[5]{x} \cdot y)\)[/tex]
2. Utilize the properties of logarithms:
- The product rule for logarithms: [tex]\(\log_b(a \cdot c) = \log_b(a) + \log_b(c)\)[/tex]
- The power rule for logarithms: [tex]\(\log_b(a^n) = n \cdot \log_b(a)\)[/tex]
3. First, handle the product inside the logarithm:
[tex]\[ \log_3(\sqrt[5]{x} \cdot y) = \log_3(\sqrt[5]{x}) + \log_3(y) \][/tex]
4. Deal with the root in the first logarithm term:
The root [tex]\(\sqrt[5]{x}\)[/tex] can be rewritten as [tex]\(x^{1/5}\)[/tex], so:
[tex]\[ \log_3(\sqrt[5]{x}) = \log_3(x^{1/5}) \][/tex]
5. Apply the power rule to the first term:
[tex]\[ \log_3(x^{1/5}) = \frac{1}{5} \log_3(x) \][/tex]
6. Combine the results:
[tex]\[ \log_3(\sqrt[5]{x} \cdot y) = \frac{1}{5} \log_3(x) + \log_3(y) \][/tex]
Therefore, the correct answer is:
A. [tex]\(\frac{1}{5} \log_3 x + \log_3 y\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.