Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the differential equation [tex]\(\frac{d^2 y}{d x^2} - 9y = 0\)[/tex], we can follow these systematic steps:
1. Rewrite the Differential Equation:
We start by rewriting the given differential equation in the form:
[tex]\[ y'' - 9y = 0 \][/tex]
where [tex]\(y''\)[/tex] denotes the second derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex].
2. Find the Characteristic Equation:
For a differential equation of the form [tex]\(ay'' + by' + cy = 0\)[/tex], we assume a solution of the form [tex]\(y = e^{mx}\)[/tex]. Substituting [tex]\(y = e^{mx}\)[/tex] into the differential equation gives us the characteristic equation. For our equation [tex]\(y'' - 9y = 0\)[/tex]:
[tex]\[ m^2 e^{mx} - 9 e^{mx} = 0 \][/tex]
This simplifies to:
[tex]\[ e^{mx}(m^2 - 9) = 0 \][/tex]
Since [tex]\(e^{mx} \neq 0\)[/tex], we can divide through by [tex]\(e^{mx}\)[/tex]:
[tex]\[ m^2 - 9 = 0 \][/tex]
3. Solve the Characteristic Equation:
Solve [tex]\(m^2 - 9 = 0\)[/tex] for [tex]\(m\)[/tex]:
[tex]\[ m^2 = 9 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ m = \pm 3 \][/tex]
Hence, the roots of the characteristic equation are [tex]\(m_1 = 3\)[/tex] and [tex]\(m_2 = -3\)[/tex].
4. Form the General Solution:
With the roots of the characteristic equation, the general solution to the differential equation is given by:
[tex]\[ y(x) = C_1 e^{3x} + C_2 e^{-3x} \][/tex]
where [tex]\(C_1\)[/tex] and [tex]\(C_2\)[/tex] are arbitrary constants determined by initial conditions if provided.
Thus, the general solution to the differential equation [tex]\(\frac{d^2 y}{d x^2} - 9y = 0\)[/tex] is:
[tex]\[ y(x) = C_1 e^{3x} + C_2 e^{-3x} \][/tex]
This completes the solution, showing each step and reasoning behind solving the homogeneous second-order linear differential equation.
1. Rewrite the Differential Equation:
We start by rewriting the given differential equation in the form:
[tex]\[ y'' - 9y = 0 \][/tex]
where [tex]\(y''\)[/tex] denotes the second derivative of [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex].
2. Find the Characteristic Equation:
For a differential equation of the form [tex]\(ay'' + by' + cy = 0\)[/tex], we assume a solution of the form [tex]\(y = e^{mx}\)[/tex]. Substituting [tex]\(y = e^{mx}\)[/tex] into the differential equation gives us the characteristic equation. For our equation [tex]\(y'' - 9y = 0\)[/tex]:
[tex]\[ m^2 e^{mx} - 9 e^{mx} = 0 \][/tex]
This simplifies to:
[tex]\[ e^{mx}(m^2 - 9) = 0 \][/tex]
Since [tex]\(e^{mx} \neq 0\)[/tex], we can divide through by [tex]\(e^{mx}\)[/tex]:
[tex]\[ m^2 - 9 = 0 \][/tex]
3. Solve the Characteristic Equation:
Solve [tex]\(m^2 - 9 = 0\)[/tex] for [tex]\(m\)[/tex]:
[tex]\[ m^2 = 9 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ m = \pm 3 \][/tex]
Hence, the roots of the characteristic equation are [tex]\(m_1 = 3\)[/tex] and [tex]\(m_2 = -3\)[/tex].
4. Form the General Solution:
With the roots of the characteristic equation, the general solution to the differential equation is given by:
[tex]\[ y(x) = C_1 e^{3x} + C_2 e^{-3x} \][/tex]
where [tex]\(C_1\)[/tex] and [tex]\(C_2\)[/tex] are arbitrary constants determined by initial conditions if provided.
Thus, the general solution to the differential equation [tex]\(\frac{d^2 y}{d x^2} - 9y = 0\)[/tex] is:
[tex]\[ y(x) = C_1 e^{3x} + C_2 e^{-3x} \][/tex]
This completes the solution, showing each step and reasoning behind solving the homogeneous second-order linear differential equation.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.