Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the time [tex]\( t \)[/tex] required for an investment to double when it is earning interest at a rate of 10%, compounded continuously, we can use the formula for continuous compounding:
[tex]\[ P_t = P_0 e^{rt} \][/tex]
Here:
- [tex]\( P_t \)[/tex] is the amount after [tex]\( t \)[/tex] years.
- [tex]\( P_0 \)[/tex] is the initial amount.
- [tex]\( r \)[/tex] is the interest rate.
- [tex]\( t \)[/tex] is the time in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm.
Our goal is to find the time [tex]\( t \)[/tex] when the investment doubles, which means [tex]\( P_t = 2P_0 \)[/tex]. We substitute [tex]\( P_t \)[/tex] and [tex]\( r \)[/tex] into the formula:
[tex]\[ 2P_0 = P_0 e^{0.10t} \][/tex]
We can divide both sides by [tex]\( P_0 \)[/tex] to simplify:
[tex]\[ 2 = e^{0.10t} \][/tex]
To solve for [tex]\( t \)[/tex], we take the natural logarithm (ln) of both sides:
[tex]\[ \ln(2) = \ln(e^{0.10t}) \][/tex]
Using the property of logarithms that [tex]\( \ln(e^x) = x \)[/tex]:
[tex]\[ \ln(2) = 0.10t \][/tex]
Now, solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(2)}{0.10} \][/tex]
The value of [tex]\( \ln(2) \)[/tex] is approximately 0.693. Therefore:
[tex]\[ t = \frac{0.693}{0.10} \approx 6.931 \][/tex]
Rounding this value to the nearest whole number gives:
[tex]\[ t \approx 7 \][/tex]
So, the time it takes for the investment to double is approximately
[tex]\[ \boxed{7} \text{ years} \][/tex]
[tex]\[ P_t = P_0 e^{rt} \][/tex]
Here:
- [tex]\( P_t \)[/tex] is the amount after [tex]\( t \)[/tex] years.
- [tex]\( P_0 \)[/tex] is the initial amount.
- [tex]\( r \)[/tex] is the interest rate.
- [tex]\( t \)[/tex] is the time in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm.
Our goal is to find the time [tex]\( t \)[/tex] when the investment doubles, which means [tex]\( P_t = 2P_0 \)[/tex]. We substitute [tex]\( P_t \)[/tex] and [tex]\( r \)[/tex] into the formula:
[tex]\[ 2P_0 = P_0 e^{0.10t} \][/tex]
We can divide both sides by [tex]\( P_0 \)[/tex] to simplify:
[tex]\[ 2 = e^{0.10t} \][/tex]
To solve for [tex]\( t \)[/tex], we take the natural logarithm (ln) of both sides:
[tex]\[ \ln(2) = \ln(e^{0.10t}) \][/tex]
Using the property of logarithms that [tex]\( \ln(e^x) = x \)[/tex]:
[tex]\[ \ln(2) = 0.10t \][/tex]
Now, solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(2)}{0.10} \][/tex]
The value of [tex]\( \ln(2) \)[/tex] is approximately 0.693. Therefore:
[tex]\[ t = \frac{0.693}{0.10} \approx 6.931 \][/tex]
Rounding this value to the nearest whole number gives:
[tex]\[ t \approx 7 \][/tex]
So, the time it takes for the investment to double is approximately
[tex]\[ \boxed{7} \text{ years} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.