Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the range of the function [tex]\( f(x) = |x| + 5 \)[/tex], let's analyze the behavior of the function step-by-step.
1. Understand the Absolute Value Function:
- The absolute value function [tex]\( |x| \)[/tex] returns the non-negative value of [tex]\( x \)[/tex].
- For any real number [tex]\( x \)[/tex], [tex]\( |x| \geq 0 \)[/tex].
2. Evaluate the Function:
- The function [tex]\( f(x) = |x| + 5 \)[/tex] is the sum of [tex]\( |x| \)[/tex] and 5.
- Since [tex]\( |x| \geq 0 \)[/tex], we have [tex]\( f(x) = |x| + 5 \geq 5 \)[/tex].
3. Minimum Value:
- To find the minimum value of [tex]\( f(x) \)[/tex], consider the point where [tex]\( |x| = 0 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( |x| = 0 \)[/tex]. So, [tex]\( f(0) = 0 + 5 = 5 \)[/tex].
- Hence, [tex]\( f(x) \)[/tex] attains its minimum value of 5.
4. Range of [tex]\( f(x) \)[/tex]:
- Since [tex]\( f(x) = |x| + 5 \geq 5 \)[/tex], the function can take any value starting from 5 and increasing without bound.
- Hence, the range of [tex]\( f(x) \)[/tex] includes all real numbers greater than or equal to 5.
Based on the above analysis, the correct option from the given list is:
[tex]\[ R: \{ f(x) \in \mathbb{R} \mid f(x) \geq 5 \} \][/tex]
Therefore, the second option is the correct one.
1. Understand the Absolute Value Function:
- The absolute value function [tex]\( |x| \)[/tex] returns the non-negative value of [tex]\( x \)[/tex].
- For any real number [tex]\( x \)[/tex], [tex]\( |x| \geq 0 \)[/tex].
2. Evaluate the Function:
- The function [tex]\( f(x) = |x| + 5 \)[/tex] is the sum of [tex]\( |x| \)[/tex] and 5.
- Since [tex]\( |x| \geq 0 \)[/tex], we have [tex]\( f(x) = |x| + 5 \geq 5 \)[/tex].
3. Minimum Value:
- To find the minimum value of [tex]\( f(x) \)[/tex], consider the point where [tex]\( |x| = 0 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( |x| = 0 \)[/tex]. So, [tex]\( f(0) = 0 + 5 = 5 \)[/tex].
- Hence, [tex]\( f(x) \)[/tex] attains its minimum value of 5.
4. Range of [tex]\( f(x) \)[/tex]:
- Since [tex]\( f(x) = |x| + 5 \geq 5 \)[/tex], the function can take any value starting from 5 and increasing without bound.
- Hence, the range of [tex]\( f(x) \)[/tex] includes all real numbers greater than or equal to 5.
Based on the above analysis, the correct option from the given list is:
[tex]\[ R: \{ f(x) \in \mathbb{R} \mid f(x) \geq 5 \} \][/tex]
Therefore, the second option is the correct one.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.