Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the inequality [tex]\(x^2 + 4x > 77\)[/tex], we will follow a step-by-step process to determine the values of [tex]\(x\)[/tex] that satisfy this condition.
### Step 1: Move all terms to one side of the inequality
First, we rewrite the inequality by moving 77 to the left side:
[tex]\[ x^2 + 4x - 77 > 0 \][/tex]
### Step 2: Solve the corresponding equation
Solve the equation [tex]\(x^2 + 4x - 77 = 0\)[/tex] to find the critical points where the expression equals zero. These points will help us determine the intervals to test for the inequality.
#### Factor the quadratic equation
We need to factor [tex]\(x^2 + 4x - 77\)[/tex]. To do this, we look for two numbers that multiply to [tex]\(-77\)[/tex] and add up to [tex]\(4\)[/tex]. After carefully considering the factors of [tex]\(-77\)[/tex], we find:
[tex]\[ (x + 11)(x - 7) = 0 \][/tex]
This gives us the critical points:
[tex]\[ x = -11 \quad \text{and} \quad x = 7 \][/tex]
### Step 3: Test intervals around the critical points
To determine where [tex]\(x^2 + 4x - 77 > 0\)[/tex], we test the intervals defined by the critical points. The critical points divide the number line into three intervals: [tex]\((-\infty, -11)\)[/tex], [tex]\((-11, 7)\)[/tex], and [tex]\((7, \infty)\)[/tex].
1. Interval [tex]\((-\infty, -11)\)[/tex]: Choose [tex]\(x = -12\)[/tex]
[tex]\[ (-12)^2 + 4(-12) - 77 = 144 - 48 - 77 = 19 \][/tex]
Since [tex]\(19 > 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] holds in this interval.
2. Interval [tex]\((-11, 7)\)[/tex]: Choose [tex]\(x = 0\)[/tex]
[tex]\[ 0^2 + 4(0) - 77 = -77 \][/tex]
Since [tex]\(-77 < 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] does not hold in this interval.
3. Interval [tex]\((7, \infty)\)[/tex]: Choose [tex]\(x = 8\)[/tex]
[tex]\[ 8^2 + 4(8) - 77 = 64 + 32 - 77 = 19 \][/tex]
Since [tex]\(19 > 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] holds in this interval.
### Conclusion
The inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] is satisfied when:
[tex]\[ x < -11 \quad \text{or} \quad x > 7 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x < -11 \text{ or } x > 7} \][/tex]
### Step 1: Move all terms to one side of the inequality
First, we rewrite the inequality by moving 77 to the left side:
[tex]\[ x^2 + 4x - 77 > 0 \][/tex]
### Step 2: Solve the corresponding equation
Solve the equation [tex]\(x^2 + 4x - 77 = 0\)[/tex] to find the critical points where the expression equals zero. These points will help us determine the intervals to test for the inequality.
#### Factor the quadratic equation
We need to factor [tex]\(x^2 + 4x - 77\)[/tex]. To do this, we look for two numbers that multiply to [tex]\(-77\)[/tex] and add up to [tex]\(4\)[/tex]. After carefully considering the factors of [tex]\(-77\)[/tex], we find:
[tex]\[ (x + 11)(x - 7) = 0 \][/tex]
This gives us the critical points:
[tex]\[ x = -11 \quad \text{and} \quad x = 7 \][/tex]
### Step 3: Test intervals around the critical points
To determine where [tex]\(x^2 + 4x - 77 > 0\)[/tex], we test the intervals defined by the critical points. The critical points divide the number line into three intervals: [tex]\((-\infty, -11)\)[/tex], [tex]\((-11, 7)\)[/tex], and [tex]\((7, \infty)\)[/tex].
1. Interval [tex]\((-\infty, -11)\)[/tex]: Choose [tex]\(x = -12\)[/tex]
[tex]\[ (-12)^2 + 4(-12) - 77 = 144 - 48 - 77 = 19 \][/tex]
Since [tex]\(19 > 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] holds in this interval.
2. Interval [tex]\((-11, 7)\)[/tex]: Choose [tex]\(x = 0\)[/tex]
[tex]\[ 0^2 + 4(0) - 77 = -77 \][/tex]
Since [tex]\(-77 < 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] does not hold in this interval.
3. Interval [tex]\((7, \infty)\)[/tex]: Choose [tex]\(x = 8\)[/tex]
[tex]\[ 8^2 + 4(8) - 77 = 64 + 32 - 77 = 19 \][/tex]
Since [tex]\(19 > 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] holds in this interval.
### Conclusion
The inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] is satisfied when:
[tex]\[ x < -11 \quad \text{or} \quad x > 7 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x < -11 \text{ or } x > 7} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.