Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the inequality [tex]\(x^2 + 4x > 77\)[/tex], we will follow a step-by-step process to determine the values of [tex]\(x\)[/tex] that satisfy this condition.
### Step 1: Move all terms to one side of the inequality
First, we rewrite the inequality by moving 77 to the left side:
[tex]\[ x^2 + 4x - 77 > 0 \][/tex]
### Step 2: Solve the corresponding equation
Solve the equation [tex]\(x^2 + 4x - 77 = 0\)[/tex] to find the critical points where the expression equals zero. These points will help us determine the intervals to test for the inequality.
#### Factor the quadratic equation
We need to factor [tex]\(x^2 + 4x - 77\)[/tex]. To do this, we look for two numbers that multiply to [tex]\(-77\)[/tex] and add up to [tex]\(4\)[/tex]. After carefully considering the factors of [tex]\(-77\)[/tex], we find:
[tex]\[ (x + 11)(x - 7) = 0 \][/tex]
This gives us the critical points:
[tex]\[ x = -11 \quad \text{and} \quad x = 7 \][/tex]
### Step 3: Test intervals around the critical points
To determine where [tex]\(x^2 + 4x - 77 > 0\)[/tex], we test the intervals defined by the critical points. The critical points divide the number line into three intervals: [tex]\((-\infty, -11)\)[/tex], [tex]\((-11, 7)\)[/tex], and [tex]\((7, \infty)\)[/tex].
1. Interval [tex]\((-\infty, -11)\)[/tex]: Choose [tex]\(x = -12\)[/tex]
[tex]\[ (-12)^2 + 4(-12) - 77 = 144 - 48 - 77 = 19 \][/tex]
Since [tex]\(19 > 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] holds in this interval.
2. Interval [tex]\((-11, 7)\)[/tex]: Choose [tex]\(x = 0\)[/tex]
[tex]\[ 0^2 + 4(0) - 77 = -77 \][/tex]
Since [tex]\(-77 < 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] does not hold in this interval.
3. Interval [tex]\((7, \infty)\)[/tex]: Choose [tex]\(x = 8\)[/tex]
[tex]\[ 8^2 + 4(8) - 77 = 64 + 32 - 77 = 19 \][/tex]
Since [tex]\(19 > 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] holds in this interval.
### Conclusion
The inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] is satisfied when:
[tex]\[ x < -11 \quad \text{or} \quad x > 7 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x < -11 \text{ or } x > 7} \][/tex]
### Step 1: Move all terms to one side of the inequality
First, we rewrite the inequality by moving 77 to the left side:
[tex]\[ x^2 + 4x - 77 > 0 \][/tex]
### Step 2: Solve the corresponding equation
Solve the equation [tex]\(x^2 + 4x - 77 = 0\)[/tex] to find the critical points where the expression equals zero. These points will help us determine the intervals to test for the inequality.
#### Factor the quadratic equation
We need to factor [tex]\(x^2 + 4x - 77\)[/tex]. To do this, we look for two numbers that multiply to [tex]\(-77\)[/tex] and add up to [tex]\(4\)[/tex]. After carefully considering the factors of [tex]\(-77\)[/tex], we find:
[tex]\[ (x + 11)(x - 7) = 0 \][/tex]
This gives us the critical points:
[tex]\[ x = -11 \quad \text{and} \quad x = 7 \][/tex]
### Step 3: Test intervals around the critical points
To determine where [tex]\(x^2 + 4x - 77 > 0\)[/tex], we test the intervals defined by the critical points. The critical points divide the number line into three intervals: [tex]\((-\infty, -11)\)[/tex], [tex]\((-11, 7)\)[/tex], and [tex]\((7, \infty)\)[/tex].
1. Interval [tex]\((-\infty, -11)\)[/tex]: Choose [tex]\(x = -12\)[/tex]
[tex]\[ (-12)^2 + 4(-12) - 77 = 144 - 48 - 77 = 19 \][/tex]
Since [tex]\(19 > 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] holds in this interval.
2. Interval [tex]\((-11, 7)\)[/tex]: Choose [tex]\(x = 0\)[/tex]
[tex]\[ 0^2 + 4(0) - 77 = -77 \][/tex]
Since [tex]\(-77 < 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] does not hold in this interval.
3. Interval [tex]\((7, \infty)\)[/tex]: Choose [tex]\(x = 8\)[/tex]
[tex]\[ 8^2 + 4(8) - 77 = 64 + 32 - 77 = 19 \][/tex]
Since [tex]\(19 > 0\)[/tex], the inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] holds in this interval.
### Conclusion
The inequality [tex]\(x^2 + 4x - 77 > 0\)[/tex] is satisfied when:
[tex]\[ x < -11 \quad \text{or} \quad x > 7 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{x < -11 \text{ or } x > 7} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.