Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's work through the problem step by step to find the area of the regular hexagon base and the volume of the right pyramid.
### Step 1: Calculate the Area of the Regular Hexagon Base
Given:
- The base edge length of the hexagon is [tex]\( 4 \)[/tex] feet.
- The area of an equilateral triangle with sides [tex]\( 4 \)[/tex] feet is [tex]\( 4 \sqrt{3} \)[/tex] square feet.
A regular hexagon can be divided into 6 equilateral triangles. Therefore:
- The area of the hexagon is [tex]\( 6 \)[/tex] times the area of one equilateral triangle.
So:
[tex]\[ \text{Area of hexagon} = 6 \times 4 \sqrt{3} \][/tex]
Simplifying this:
[tex]\[ \text{Area of hexagon} = 24 \sqrt{3} \text{ square feet} \][/tex]
### Step 2: Calculate the Volume of the Pyramid
Given:
- The height of the pyramid is [tex]\( 10 \)[/tex] feet.
- The base area of the hexagon calculated is [tex]\( 24 \sqrt{3} \)[/tex] square feet.
The formula for the volume of a pyramid is:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
So, substituting the values:
[tex]\[ V = \frac{1}{3} \times 24 \sqrt{3} \times 10 \][/tex]
Simplifying this:
[tex]\[ V = \frac{1}{3} \times 240 \sqrt{3} \][/tex]
[tex]\[ V = 80 \sqrt{3} \text{ cubic feet} \][/tex]
### Conclusion
The solutions are:
- The area of the regular hexagon base is [tex]\( \boxed{24 \sqrt{3}} \)[/tex] square feet.
- The volume of the pyramid is [tex]\( \boxed{80 \sqrt{3}} \)[/tex] cubic feet.
To relate this with the numerical results that were provided:
- The area [tex]\( 24 \sqrt{3} \)[/tex] square feet is approximately [tex]\( 41.57 \)[/tex] square feet.
- The volume [tex]\( 80 \sqrt{3} \)[/tex] cubic feet is approximately [tex]\( 138.56 \)[/tex] cubic feet.
### Step 1: Calculate the Area of the Regular Hexagon Base
Given:
- The base edge length of the hexagon is [tex]\( 4 \)[/tex] feet.
- The area of an equilateral triangle with sides [tex]\( 4 \)[/tex] feet is [tex]\( 4 \sqrt{3} \)[/tex] square feet.
A regular hexagon can be divided into 6 equilateral triangles. Therefore:
- The area of the hexagon is [tex]\( 6 \)[/tex] times the area of one equilateral triangle.
So:
[tex]\[ \text{Area of hexagon} = 6 \times 4 \sqrt{3} \][/tex]
Simplifying this:
[tex]\[ \text{Area of hexagon} = 24 \sqrt{3} \text{ square feet} \][/tex]
### Step 2: Calculate the Volume of the Pyramid
Given:
- The height of the pyramid is [tex]\( 10 \)[/tex] feet.
- The base area of the hexagon calculated is [tex]\( 24 \sqrt{3} \)[/tex] square feet.
The formula for the volume of a pyramid is:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
So, substituting the values:
[tex]\[ V = \frac{1}{3} \times 24 \sqrt{3} \times 10 \][/tex]
Simplifying this:
[tex]\[ V = \frac{1}{3} \times 240 \sqrt{3} \][/tex]
[tex]\[ V = 80 \sqrt{3} \text{ cubic feet} \][/tex]
### Conclusion
The solutions are:
- The area of the regular hexagon base is [tex]\( \boxed{24 \sqrt{3}} \)[/tex] square feet.
- The volume of the pyramid is [tex]\( \boxed{80 \sqrt{3}} \)[/tex] cubic feet.
To relate this with the numerical results that were provided:
- The area [tex]\( 24 \sqrt{3} \)[/tex] square feet is approximately [tex]\( 41.57 \)[/tex] square feet.
- The volume [tex]\( 80 \sqrt{3} \)[/tex] cubic feet is approximately [tex]\( 138.56 \)[/tex] cubic feet.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.