Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this problem step-by-step to determine which point is not included in the solution set for the inequality.
Assume we have the inequality [tex]\( y < 2x + 3 \)[/tex].
We will test each point against this inequality:
1. Point [tex]\( (0, 6) \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] and [tex]\( y = 6 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 6 < 2(0) + 3 \implies 6 < 3 \][/tex]
- This statement is false because 6 is not less than 3. Therefore, the point [tex]\( (0, 6) \)[/tex] does not satisfy the inequality.
2. Point [tex]\( (1, 5) \)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 5 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 5 < 2(1) + 3 \implies 5 < 5 \][/tex]
- This statement is false because 5 is not less than 5. However, [tex]\( 5 = 5 \)[/tex], and we need [tex]\( y \)[/tex] to be strictly less than [tex]\( 2x + 3 \)[/tex]. So, the point [tex]\( (1, 5) \)[/tex] does not satisfy the inequality.
3. Point [tex]\( (2, 4) \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 4 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 4 < 2(2) + 3 \implies 4 < 7 \][/tex]
- This statement is true because 4 is less than 7. Therefore, the point [tex]\( (2, 4) \)[/tex] satisfies the inequality.
4. Point [tex]\( (3, 2) \)[/tex]:
- Substitute [tex]\( x = 3 \)[/tex] and [tex]\( y = 2 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 2 < 2(3) + 3 \implies 2 < 9 \][/tex]
- This statement is true because 2 is less than 9. Therefore, the point [tex]\( (3, 2) \)[/tex] satisfies the inequality.
Based on the above tests, the point that does not satisfy the inequality [tex]\( y < 2x + 3 \)[/tex] is [tex]\( (0, 6) \)[/tex]. Therefore, the point that is not included in the solution set for the inequality is [tex]\( (0, 6) \)[/tex].
Assume we have the inequality [tex]\( y < 2x + 3 \)[/tex].
We will test each point against this inequality:
1. Point [tex]\( (0, 6) \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] and [tex]\( y = 6 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 6 < 2(0) + 3 \implies 6 < 3 \][/tex]
- This statement is false because 6 is not less than 3. Therefore, the point [tex]\( (0, 6) \)[/tex] does not satisfy the inequality.
2. Point [tex]\( (1, 5) \)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 5 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 5 < 2(1) + 3 \implies 5 < 5 \][/tex]
- This statement is false because 5 is not less than 5. However, [tex]\( 5 = 5 \)[/tex], and we need [tex]\( y \)[/tex] to be strictly less than [tex]\( 2x + 3 \)[/tex]. So, the point [tex]\( (1, 5) \)[/tex] does not satisfy the inequality.
3. Point [tex]\( (2, 4) \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 4 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 4 < 2(2) + 3 \implies 4 < 7 \][/tex]
- This statement is true because 4 is less than 7. Therefore, the point [tex]\( (2, 4) \)[/tex] satisfies the inequality.
4. Point [tex]\( (3, 2) \)[/tex]:
- Substitute [tex]\( x = 3 \)[/tex] and [tex]\( y = 2 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 2 < 2(3) + 3 \implies 2 < 9 \][/tex]
- This statement is true because 2 is less than 9. Therefore, the point [tex]\( (3, 2) \)[/tex] satisfies the inequality.
Based on the above tests, the point that does not satisfy the inequality [tex]\( y < 2x + 3 \)[/tex] is [tex]\( (0, 6) \)[/tex]. Therefore, the point that is not included in the solution set for the inequality is [tex]\( (0, 6) \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.