Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which point is not included in the solution set for the inequality?

A. [tex]$(0,6)$[/tex]
B. [tex]$(1,5)$[/tex]
C. [tex]$(2,4)$[/tex]
D. [tex]$(3,2)$[/tex]


Sagot :

Let's solve this problem step-by-step to determine which point is not included in the solution set for the inequality.

Assume we have the inequality [tex]\( y < 2x + 3 \)[/tex].

We will test each point against this inequality:

1. Point [tex]\( (0, 6) \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] and [tex]\( y = 6 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 6 < 2(0) + 3 \implies 6 < 3 \][/tex]
- This statement is false because 6 is not less than 3. Therefore, the point [tex]\( (0, 6) \)[/tex] does not satisfy the inequality.

2. Point [tex]\( (1, 5) \)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 5 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 5 < 2(1) + 3 \implies 5 < 5 \][/tex]
- This statement is false because 5 is not less than 5. However, [tex]\( 5 = 5 \)[/tex], and we need [tex]\( y \)[/tex] to be strictly less than [tex]\( 2x + 3 \)[/tex]. So, the point [tex]\( (1, 5) \)[/tex] does not satisfy the inequality.

3. Point [tex]\( (2, 4) \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 4 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 4 < 2(2) + 3 \implies 4 < 7 \][/tex]
- This statement is true because 4 is less than 7. Therefore, the point [tex]\( (2, 4) \)[/tex] satisfies the inequality.

4. Point [tex]\( (3, 2) \)[/tex]:
- Substitute [tex]\( x = 3 \)[/tex] and [tex]\( y = 2 \)[/tex] into the inequality [tex]\( y < 2x + 3 \)[/tex]:
[tex]\[ 2 < 2(3) + 3 \implies 2 < 9 \][/tex]
- This statement is true because 2 is less than 9. Therefore, the point [tex]\( (3, 2) \)[/tex] satisfies the inequality.

Based on the above tests, the point that does not satisfy the inequality [tex]\( y < 2x + 3 \)[/tex] is [tex]\( (0, 6) \)[/tex]. Therefore, the point that is not included in the solution set for the inequality is [tex]\( (0, 6) \)[/tex].