At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

What is the slope of the line represented by the equation [tex]$y-6=2(x+3)$[/tex]?

A. -6
B. 3
C. 2
D. 6


Sagot :

To determine the slope of the line represented by the equation [tex]\( y - 6 = 2(x + 3) \)[/tex], we need to rewrite the equation in the slope-intercept form, which is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.

Let's start by simplifying and rearranging the given equation step-by-step:

1. Start with the original equation:
[tex]\[ y - 6 = 2(x + 3) \][/tex]

2. Distribute the 2 on the right-hand side:
[tex]\[ y - 6 = 2x + 6 \][/tex]

3. To isolate [tex]\( y \)[/tex], add 6 to both sides of the equation:
[tex]\[ y = 2x + 6 + 6 \][/tex]

4. Simplify the right-hand side:
[tex]\[ y = 2x + 12 \][/tex]

Now, the equation is in the slope-intercept form [tex]\( y = mx + b \)[/tex] with [tex]\( m \)[/tex] being the coefficient of [tex]\( x \)[/tex]. From the equation [tex]\( y = 2x + 12 \)[/tex], we see that the coefficient of [tex]\( x \)[/tex] is 2.

Hence, the slope [tex]\( m \)[/tex] of the line is:
[tex]\[ \boxed{2} \][/tex]