Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the given inequality [tex]\( |2x + 3| < 7 \)[/tex] step-by-step.
### Step 1: Understand the Inequality
The absolute value inequality [tex]\( |2x + 3| < 7 \)[/tex] can be broken down into two separate linear inequalities:
[tex]\[ -7 < 2x + 3 < 7 \][/tex]
### Step 2: Break it Down
We can express [tex]\( |2x + 3| < 7 \)[/tex] as a compound inequality:
[tex]\[ -7 < 2x + 3 \quad \text{and} \quad 2x + 3 < 7 \][/tex]
### Step 3: Solve the Compound Inequality
#### Part 1: Solve [tex]\( -7 < 2x + 3 \)[/tex]
First, isolate [tex]\( x \)[/tex]:
1. Subtract 3 from both sides:
[tex]\[ -7 - 3 < 2x \][/tex]
[tex]\[ -10 < 2x \][/tex]
2. Divide both sides by 2:
[tex]\[ -5 < x \][/tex]
#### Part 2: Solve [tex]\( 2x + 3 < 7 \)[/tex]
Next, isolate [tex]\( x \)[/tex]:
1. Subtract 3 from both sides:
[tex]\[ 2x < 7 - 3 \][/tex]
[tex]\[ 2x < 4 \][/tex]
2. Divide both sides by 2:
[tex]\[ x < 2 \][/tex]
### Step 4: Combine the Solutions
From both parts, we obtained:
[tex]\[ -5 < x \][/tex]
[tex]\[ x < 2 \][/tex]
Combining these results, we get:
[tex]\[ -5 < x < 2 \][/tex]
### Step 5: Write the Final Solution
Therefore, the solution to the inequality [tex]\( |2x + 3| < 7 \)[/tex] is:
[tex]\[ -5 < x < 2 \][/tex]
### Step 6: Find the Correct Choice
Looking at the given options, the correct choice is:
[tex]\[ \boxed{-5 < x < 2} \][/tex]
### Step 1: Understand the Inequality
The absolute value inequality [tex]\( |2x + 3| < 7 \)[/tex] can be broken down into two separate linear inequalities:
[tex]\[ -7 < 2x + 3 < 7 \][/tex]
### Step 2: Break it Down
We can express [tex]\( |2x + 3| < 7 \)[/tex] as a compound inequality:
[tex]\[ -7 < 2x + 3 \quad \text{and} \quad 2x + 3 < 7 \][/tex]
### Step 3: Solve the Compound Inequality
#### Part 1: Solve [tex]\( -7 < 2x + 3 \)[/tex]
First, isolate [tex]\( x \)[/tex]:
1. Subtract 3 from both sides:
[tex]\[ -7 - 3 < 2x \][/tex]
[tex]\[ -10 < 2x \][/tex]
2. Divide both sides by 2:
[tex]\[ -5 < x \][/tex]
#### Part 2: Solve [tex]\( 2x + 3 < 7 \)[/tex]
Next, isolate [tex]\( x \)[/tex]:
1. Subtract 3 from both sides:
[tex]\[ 2x < 7 - 3 \][/tex]
[tex]\[ 2x < 4 \][/tex]
2. Divide both sides by 2:
[tex]\[ x < 2 \][/tex]
### Step 4: Combine the Solutions
From both parts, we obtained:
[tex]\[ -5 < x \][/tex]
[tex]\[ x < 2 \][/tex]
Combining these results, we get:
[tex]\[ -5 < x < 2 \][/tex]
### Step 5: Write the Final Solution
Therefore, the solution to the inequality [tex]\( |2x + 3| < 7 \)[/tex] is:
[tex]\[ -5 < x < 2 \][/tex]
### Step 6: Find the Correct Choice
Looking at the given options, the correct choice is:
[tex]\[ \boxed{-5 < x < 2} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.