Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's go through the steps to find the inverse function of [tex]\( f(x) = 5x - 3 \)[/tex].
### Step 1: Substitute [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]
We start by rewriting the function [tex]\( f(x) = 5x - 3 \)[/tex] with [tex]\( y \)[/tex] instead of [tex]\( f(x) \)[/tex]:
[tex]\[ y = 5x - 3 \][/tex]
### Step 2: Solve for [tex]\( x \)[/tex]
To find the inverse function, we need to solve this equation for [tex]\( x \)[/tex]:
1. Add 3 to both sides of the equation to isolate the term containing [tex]\( x \)[/tex]:
[tex]\[ y + 3 = 5x \][/tex]
2. Divide both sides by 5 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y + 3}{5} \][/tex]
### Step 3: Express the Inverse Function
Now that we have solved for [tex]\( x \)[/tex], we write the inverse function [tex]\( f^{-1}(y) \)[/tex]. In mathematics, we usually denote the inverse function with [tex]\( x \)[/tex] again for the variable, following the convention [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{x + 3}{5} \][/tex]
### Conclusion
The correct expression representing the inverse function of [tex]\( f(x) = 5x - 3 \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{x + 3}{5} \][/tex]
Looking at the given choices:
A. [tex]\(\frac{(x+3)}{(x+2)}\)[/tex]
B. [tex]\(\frac{(x+3)}{(5)}\)[/tex]
C. [tex]\(\frac{(5)}{(x+3)}\)[/tex]
D. [tex]\(\frac{(x-3)}{(2)}\)[/tex]
The correct answer is:
B. [tex]\(\frac{(x+3)}{(5)}\)[/tex]
So, the answer is:
[tex]\[ \boxed{\frac{(x+3)}{(5)}} \][/tex]
### Step 1: Substitute [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]
We start by rewriting the function [tex]\( f(x) = 5x - 3 \)[/tex] with [tex]\( y \)[/tex] instead of [tex]\( f(x) \)[/tex]:
[tex]\[ y = 5x - 3 \][/tex]
### Step 2: Solve for [tex]\( x \)[/tex]
To find the inverse function, we need to solve this equation for [tex]\( x \)[/tex]:
1. Add 3 to both sides of the equation to isolate the term containing [tex]\( x \)[/tex]:
[tex]\[ y + 3 = 5x \][/tex]
2. Divide both sides by 5 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y + 3}{5} \][/tex]
### Step 3: Express the Inverse Function
Now that we have solved for [tex]\( x \)[/tex], we write the inverse function [tex]\( f^{-1}(y) \)[/tex]. In mathematics, we usually denote the inverse function with [tex]\( x \)[/tex] again for the variable, following the convention [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{x + 3}{5} \][/tex]
### Conclusion
The correct expression representing the inverse function of [tex]\( f(x) = 5x - 3 \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{x + 3}{5} \][/tex]
Looking at the given choices:
A. [tex]\(\frac{(x+3)}{(x+2)}\)[/tex]
B. [tex]\(\frac{(x+3)}{(5)}\)[/tex]
C. [tex]\(\frac{(5)}{(x+3)}\)[/tex]
D. [tex]\(\frac{(x-3)}{(2)}\)[/tex]
The correct answer is:
B. [tex]\(\frac{(x+3)}{(5)}\)[/tex]
So, the answer is:
[tex]\[ \boxed{\frac{(x+3)}{(5)}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.