Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the maximum possible area of the rectangular field given by the quadratic equation [tex]\(A(x) = -2x^2 + 10x + 32\)[/tex], follow these steps:
1. Understand the nature of the quadratic equation:
The equation is in the form [tex]\(A(x) = ax^2 + bx + c\)[/tex], where [tex]\(a = -2\)[/tex], [tex]\(b = 10\)[/tex], and [tex]\(c = 32\)[/tex]. Since the coefficient of [tex]\(x^2\)[/tex] (which is [tex]\(a\)[/tex]) is negative, the parabola opens downwards, indicating that the quadratic function has a maximum value.
2. Find the vertex of the parabola:
The vertex of the parabola represented by the quadratic equation [tex]\(ax^2 + bx + c\)[/tex] gives the maximum (or minimum) point. For a quadratic equation [tex]\(ax^2 + bx + c\)[/tex], the [tex]\(x\)[/tex]-coordinate of the vertex can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
In this case:
[tex]\[ a = -2, \quad b = 10 \][/tex]
Substitute these values into the vertex formula:
[tex]\[ x = -\frac{10}{2(-2)} = -\frac{10}{-4} = 2.5 \][/tex]
Hence, the width [tex]\(x\)[/tex] at which the area is maximized is [tex]\(2.5\)[/tex] meters.
3. Calculate the maximum area:
To find the maximum area, plug the [tex]\(x\)[/tex]-coordinate of the vertex back into the quadratic equation [tex]\(A(x)\)[/tex]:
[tex]\[ A(2.5) = -2(2.5)^2 + 10(2.5) + 32 \][/tex]
Calculate each term step-by-step:
[tex]\[ (2.5)^2 = 6.25 \][/tex]
[tex]\[ -2(6.25) = -12.5 \][/tex]
[tex]\[ 10(2.5) = 25 \][/tex]
Now add all the terms together:
[tex]\[ A(2.5) = -12.5 + 25 + 32 = 44.5 \][/tex]
Thus, the maximum possible area of the field is [tex]\(44.5\)[/tex] square meters.
Through these detailed steps, we determined that the width [tex]\(x\)[/tex] at which the area is maximized is [tex]\(2.5\)[/tex] meters, and the maximum possible area of the field is [tex]\(44.5\)[/tex] square meters.
1. Understand the nature of the quadratic equation:
The equation is in the form [tex]\(A(x) = ax^2 + bx + c\)[/tex], where [tex]\(a = -2\)[/tex], [tex]\(b = 10\)[/tex], and [tex]\(c = 32\)[/tex]. Since the coefficient of [tex]\(x^2\)[/tex] (which is [tex]\(a\)[/tex]) is negative, the parabola opens downwards, indicating that the quadratic function has a maximum value.
2. Find the vertex of the parabola:
The vertex of the parabola represented by the quadratic equation [tex]\(ax^2 + bx + c\)[/tex] gives the maximum (or minimum) point. For a quadratic equation [tex]\(ax^2 + bx + c\)[/tex], the [tex]\(x\)[/tex]-coordinate of the vertex can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
In this case:
[tex]\[ a = -2, \quad b = 10 \][/tex]
Substitute these values into the vertex formula:
[tex]\[ x = -\frac{10}{2(-2)} = -\frac{10}{-4} = 2.5 \][/tex]
Hence, the width [tex]\(x\)[/tex] at which the area is maximized is [tex]\(2.5\)[/tex] meters.
3. Calculate the maximum area:
To find the maximum area, plug the [tex]\(x\)[/tex]-coordinate of the vertex back into the quadratic equation [tex]\(A(x)\)[/tex]:
[tex]\[ A(2.5) = -2(2.5)^2 + 10(2.5) + 32 \][/tex]
Calculate each term step-by-step:
[tex]\[ (2.5)^2 = 6.25 \][/tex]
[tex]\[ -2(6.25) = -12.5 \][/tex]
[tex]\[ 10(2.5) = 25 \][/tex]
Now add all the terms together:
[tex]\[ A(2.5) = -12.5 + 25 + 32 = 44.5 \][/tex]
Thus, the maximum possible area of the field is [tex]\(44.5\)[/tex] square meters.
Through these detailed steps, we determined that the width [tex]\(x\)[/tex] at which the area is maximized is [tex]\(2.5\)[/tex] meters, and the maximum possible area of the field is [tex]\(44.5\)[/tex] square meters.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.