Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the maximum possible area of the rectangular field given by the quadratic equation [tex]\(A(x) = -2x^2 + 10x + 32\)[/tex], follow these steps:
1. Understand the nature of the quadratic equation:
The equation is in the form [tex]\(A(x) = ax^2 + bx + c\)[/tex], where [tex]\(a = -2\)[/tex], [tex]\(b = 10\)[/tex], and [tex]\(c = 32\)[/tex]. Since the coefficient of [tex]\(x^2\)[/tex] (which is [tex]\(a\)[/tex]) is negative, the parabola opens downwards, indicating that the quadratic function has a maximum value.
2. Find the vertex of the parabola:
The vertex of the parabola represented by the quadratic equation [tex]\(ax^2 + bx + c\)[/tex] gives the maximum (or minimum) point. For a quadratic equation [tex]\(ax^2 + bx + c\)[/tex], the [tex]\(x\)[/tex]-coordinate of the vertex can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
In this case:
[tex]\[ a = -2, \quad b = 10 \][/tex]
Substitute these values into the vertex formula:
[tex]\[ x = -\frac{10}{2(-2)} = -\frac{10}{-4} = 2.5 \][/tex]
Hence, the width [tex]\(x\)[/tex] at which the area is maximized is [tex]\(2.5\)[/tex] meters.
3. Calculate the maximum area:
To find the maximum area, plug the [tex]\(x\)[/tex]-coordinate of the vertex back into the quadratic equation [tex]\(A(x)\)[/tex]:
[tex]\[ A(2.5) = -2(2.5)^2 + 10(2.5) + 32 \][/tex]
Calculate each term step-by-step:
[tex]\[ (2.5)^2 = 6.25 \][/tex]
[tex]\[ -2(6.25) = -12.5 \][/tex]
[tex]\[ 10(2.5) = 25 \][/tex]
Now add all the terms together:
[tex]\[ A(2.5) = -12.5 + 25 + 32 = 44.5 \][/tex]
Thus, the maximum possible area of the field is [tex]\(44.5\)[/tex] square meters.
Through these detailed steps, we determined that the width [tex]\(x\)[/tex] at which the area is maximized is [tex]\(2.5\)[/tex] meters, and the maximum possible area of the field is [tex]\(44.5\)[/tex] square meters.
1. Understand the nature of the quadratic equation:
The equation is in the form [tex]\(A(x) = ax^2 + bx + c\)[/tex], where [tex]\(a = -2\)[/tex], [tex]\(b = 10\)[/tex], and [tex]\(c = 32\)[/tex]. Since the coefficient of [tex]\(x^2\)[/tex] (which is [tex]\(a\)[/tex]) is negative, the parabola opens downwards, indicating that the quadratic function has a maximum value.
2. Find the vertex of the parabola:
The vertex of the parabola represented by the quadratic equation [tex]\(ax^2 + bx + c\)[/tex] gives the maximum (or minimum) point. For a quadratic equation [tex]\(ax^2 + bx + c\)[/tex], the [tex]\(x\)[/tex]-coordinate of the vertex can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
In this case:
[tex]\[ a = -2, \quad b = 10 \][/tex]
Substitute these values into the vertex formula:
[tex]\[ x = -\frac{10}{2(-2)} = -\frac{10}{-4} = 2.5 \][/tex]
Hence, the width [tex]\(x\)[/tex] at which the area is maximized is [tex]\(2.5\)[/tex] meters.
3. Calculate the maximum area:
To find the maximum area, plug the [tex]\(x\)[/tex]-coordinate of the vertex back into the quadratic equation [tex]\(A(x)\)[/tex]:
[tex]\[ A(2.5) = -2(2.5)^2 + 10(2.5) + 32 \][/tex]
Calculate each term step-by-step:
[tex]\[ (2.5)^2 = 6.25 \][/tex]
[tex]\[ -2(6.25) = -12.5 \][/tex]
[tex]\[ 10(2.5) = 25 \][/tex]
Now add all the terms together:
[tex]\[ A(2.5) = -12.5 + 25 + 32 = 44.5 \][/tex]
Thus, the maximum possible area of the field is [tex]\(44.5\)[/tex] square meters.
Through these detailed steps, we determined that the width [tex]\(x\)[/tex] at which the area is maximized is [tex]\(2.5\)[/tex] meters, and the maximum possible area of the field is [tex]\(44.5\)[/tex] square meters.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.