At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's address each part of the question step-by-step.
### [a] Writing down the column matrix [tex]\( N \)[/tex] representing the cost of each type of smoothie:
The costs for the smoothies are given as:
- Small portion costs \[tex]$4.75 - Large portion costs \$[/tex]5.50
We can represent these costs in a column matrix [tex]\( N \)[/tex]:
[tex]\[ N = \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \][/tex]
### [b] Given matrix [tex]\( M = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \)[/tex], evaluate [tex]\( MN \)[/tex]:
First, let's re-write the given matrices [tex]\( M \)[/tex] and [tex]\( N \)[/tex]:
[tex]\( M = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \)[/tex]
[tex]\( N = \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \)[/tex]
Now, to find [tex]\( MN \)[/tex], we need to perform matrix multiplication:
[tex]\[ MN = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \][/tex]
To perform the multiplication, multiply each element of the rows of [tex]\( M \)[/tex] by the corresponding element of the column [tex]\( N \)[/tex] and then sum these products for each entry in the resulting matrix:
[tex]\[ \begin{aligned} MN &= \begin{pmatrix} (6 \times 4.75) + (3 \times 5.50) \\ (4 \times 4.75) + (7 \times 5.50) \end{pmatrix} \\ &= \begin{pmatrix} 28.5 + 16.5 \\ 19 + 38.5 \end{pmatrix} \\ &= \begin{pmatrix} 45.0 \\ 57.5 \end{pmatrix} \][/tex]
### [c] Explanation of the numbers in the answer to [b]:
The numbers in the resulting matrix from part [b] [tex]\( MN \)[/tex] represent the total sales revenue for each type of smoothie.
- The first element (45.0) represents the total revenue generated from the sales of strawberry smoothies.
- The second element (57.5) represents the total revenue generated from the sales of mango smoothies.
By breaking it down:
- For strawberry smoothies: [tex]\( 6 \times \$4.75 \)[/tex] from small portions plus [tex]\( 3 \times \$5.50 \)[/tex] from large portions give a total revenue of \[tex]$45.0. - For mango smoothies: \( 4 \times \$[/tex]4.75 \) from small portions plus [tex]\( 7 \times \$5.50 \)[/tex] from large portions give a total revenue of \[tex]$57.5. So, we find that the total revenue from strawberry smoothies is \$[/tex]45.0 and from mango smoothies is \$57.5.
### [a] Writing down the column matrix [tex]\( N \)[/tex] representing the cost of each type of smoothie:
The costs for the smoothies are given as:
- Small portion costs \[tex]$4.75 - Large portion costs \$[/tex]5.50
We can represent these costs in a column matrix [tex]\( N \)[/tex]:
[tex]\[ N = \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \][/tex]
### [b] Given matrix [tex]\( M = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \)[/tex], evaluate [tex]\( MN \)[/tex]:
First, let's re-write the given matrices [tex]\( M \)[/tex] and [tex]\( N \)[/tex]:
[tex]\( M = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \)[/tex]
[tex]\( N = \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \)[/tex]
Now, to find [tex]\( MN \)[/tex], we need to perform matrix multiplication:
[tex]\[ MN = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \][/tex]
To perform the multiplication, multiply each element of the rows of [tex]\( M \)[/tex] by the corresponding element of the column [tex]\( N \)[/tex] and then sum these products for each entry in the resulting matrix:
[tex]\[ \begin{aligned} MN &= \begin{pmatrix} (6 \times 4.75) + (3 \times 5.50) \\ (4 \times 4.75) + (7 \times 5.50) \end{pmatrix} \\ &= \begin{pmatrix} 28.5 + 16.5 \\ 19 + 38.5 \end{pmatrix} \\ &= \begin{pmatrix} 45.0 \\ 57.5 \end{pmatrix} \][/tex]
### [c] Explanation of the numbers in the answer to [b]:
The numbers in the resulting matrix from part [b] [tex]\( MN \)[/tex] represent the total sales revenue for each type of smoothie.
- The first element (45.0) represents the total revenue generated from the sales of strawberry smoothies.
- The second element (57.5) represents the total revenue generated from the sales of mango smoothies.
By breaking it down:
- For strawberry smoothies: [tex]\( 6 \times \$4.75 \)[/tex] from small portions plus [tex]\( 3 \times \$5.50 \)[/tex] from large portions give a total revenue of \[tex]$45.0. - For mango smoothies: \( 4 \times \$[/tex]4.75 \) from small portions plus [tex]\( 7 \times \$5.50 \)[/tex] from large portions give a total revenue of \[tex]$57.5. So, we find that the total revenue from strawberry smoothies is \$[/tex]45.0 and from mango smoothies is \$57.5.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.