Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the real solutions of the quadratic equation [tex]\(3x^2 + 3x + 8 = 0\)[/tex], we can follow these steps:
1. Identify the coefficients:
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. Here, we have:
[tex]\[ a = 3, \quad b = 3, \quad c = 8 \][/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 3^2 - 4 \cdot 3 \cdot 8 \][/tex]
Simplify it step by step:
[tex]\[ \Delta = 9 - 96 = -87 \][/tex]
3. Analyze the discriminant:
The nature of the roots of the quadratic equation depends on the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], there is one real solution (a repeated root).
- If [tex]\(\Delta < 0\)[/tex], there are no real solutions; the solutions are complex.
Here, the discriminant [tex]\(\Delta = -87\)[/tex] is less than zero. This indicates that there are no real solutions.
Therefore, the quadratic equation [tex]\(3x^2 + 3x + 8 = 0\)[/tex] does not have any real solutions.
1. Identify the coefficients:
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. Here, we have:
[tex]\[ a = 3, \quad b = 3, \quad c = 8 \][/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 3^2 - 4 \cdot 3 \cdot 8 \][/tex]
Simplify it step by step:
[tex]\[ \Delta = 9 - 96 = -87 \][/tex]
3. Analyze the discriminant:
The nature of the roots of the quadratic equation depends on the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], there is one real solution (a repeated root).
- If [tex]\(\Delta < 0\)[/tex], there are no real solutions; the solutions are complex.
Here, the discriminant [tex]\(\Delta = -87\)[/tex] is less than zero. This indicates that there are no real solutions.
Therefore, the quadratic equation [tex]\(3x^2 + 3x + 8 = 0\)[/tex] does not have any real solutions.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.