Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the correct solutions to the equation [tex]\((2x + 3)^2 = 10\)[/tex], follow these detailed steps:
1. Start by expanding and simplifying the given equation:
[tex]\[ (2x + 3)^2 = 10 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ 2x + 3 = \pm\sqrt{10} \][/tex]
This gives us two separate equations:
[tex]\[ 2x + 3 = \sqrt{10} \][/tex]
and
[tex]\[ 2x + 3 = -\sqrt{10} \][/tex]
2. Solve the first equation:
[tex]\[ 2x + 3 = \sqrt{10} \][/tex]
Subtract 3 from both sides:
[tex]\[ 2x = \sqrt{10} - 3 \][/tex]
Divide by 2:
[tex]\[ x = \frac{\sqrt{10} - 3}{2} \][/tex]
3. Solve the second equation:
[tex]\[ 2x + 3 = -\sqrt{10} \][/tex]
Subtract 3 from both sides:
[tex]\[ 2x = -\sqrt{10} - 3 \][/tex]
Divide by 2:
[tex]\[ x = \frac{-\sqrt{10} - 3}{2} \][/tex]
4. Now, compare these solutions to the given options:
- [tex]\(C. \quad x = \frac{-\sqrt{10} - 3}{2}\)[/tex] is one of the solutions we found.
- [tex]\(F. \quad x = \frac{\sqrt{10} - 3}{2}\)[/tex] is the other solution we found.
Therefore, the correct solutions to the equation [tex]\((2x + 3)^2 = 10\)[/tex] from the given options are:
- [tex]\(C. \quad x = \frac{-\sqrt{10} - 3}{2}\)[/tex]
- [tex]\(F. \quad x = \frac{\sqrt{10} - 3}{2}\)[/tex]
Thus, the answers are C and F.
1. Start by expanding and simplifying the given equation:
[tex]\[ (2x + 3)^2 = 10 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ 2x + 3 = \pm\sqrt{10} \][/tex]
This gives us two separate equations:
[tex]\[ 2x + 3 = \sqrt{10} \][/tex]
and
[tex]\[ 2x + 3 = -\sqrt{10} \][/tex]
2. Solve the first equation:
[tex]\[ 2x + 3 = \sqrt{10} \][/tex]
Subtract 3 from both sides:
[tex]\[ 2x = \sqrt{10} - 3 \][/tex]
Divide by 2:
[tex]\[ x = \frac{\sqrt{10} - 3}{2} \][/tex]
3. Solve the second equation:
[tex]\[ 2x + 3 = -\sqrt{10} \][/tex]
Subtract 3 from both sides:
[tex]\[ 2x = -\sqrt{10} - 3 \][/tex]
Divide by 2:
[tex]\[ x = \frac{-\sqrt{10} - 3}{2} \][/tex]
4. Now, compare these solutions to the given options:
- [tex]\(C. \quad x = \frac{-\sqrt{10} - 3}{2}\)[/tex] is one of the solutions we found.
- [tex]\(F. \quad x = \frac{\sqrt{10} - 3}{2}\)[/tex] is the other solution we found.
Therefore, the correct solutions to the equation [tex]\((2x + 3)^2 = 10\)[/tex] from the given options are:
- [tex]\(C. \quad x = \frac{-\sqrt{10} - 3}{2}\)[/tex]
- [tex]\(F. \quad x = \frac{\sqrt{10} - 3}{2}\)[/tex]
Thus, the answers are C and F.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.