Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the number of solutions for the quadratic equation [tex]\(x^2 - 4x + 4 = 0\)[/tex], we need to analyze its discriminant. The discriminant ([tex]\(\Delta\)[/tex]) for a quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
In our specific equation [tex]\(x^2 - 4x + 4 = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -4\)[/tex]
- [tex]\(c = 4\)[/tex]
Substituting these values into the discriminant formula, we get:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 4 \][/tex]
Calculating this step-by-step:
[tex]\[ \Delta = 16 - 16 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant ([tex]\(\Delta\)[/tex]) is 0. The number of solutions of a quadratic equation depends on the value of the discriminant:
1. If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real solutions.
2. If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real solution (often called a repeated or double root).
3. If [tex]\(\Delta < 0\)[/tex], the equation has no real solutions but two complex solutions.
Since our discriminant is 0, the quadratic equation [tex]\(x^2 - 4x + 4 = 0\)[/tex] has exactly one real solution.
Thus, the correct answer is:
(B) 1 real solution
[tex]\[ \Delta = b^2 - 4ac \][/tex]
In our specific equation [tex]\(x^2 - 4x + 4 = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -4\)[/tex]
- [tex]\(c = 4\)[/tex]
Substituting these values into the discriminant formula, we get:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 4 \][/tex]
Calculating this step-by-step:
[tex]\[ \Delta = 16 - 16 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant ([tex]\(\Delta\)[/tex]) is 0. The number of solutions of a quadratic equation depends on the value of the discriminant:
1. If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real solutions.
2. If [tex]\(\Delta = 0\)[/tex], the equation has exactly one real solution (often called a repeated or double root).
3. If [tex]\(\Delta < 0\)[/tex], the equation has no real solutions but two complex solutions.
Since our discriminant is 0, the quadratic equation [tex]\(x^2 - 4x + 4 = 0\)[/tex] has exactly one real solution.
Thus, the correct answer is:
(B) 1 real solution
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.