Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex], we can use Hess's Law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for any set of reactions that add up to the overall reaction. Here are the steps to find the enthalpy change:
1. Identify the given thermochemical equations and their enthalpies:
- Equation 1: [tex]\(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_1 = -571 \text{kJ}\)[/tex]
- Equation 2: [tex]\(2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2\)[/tex], [tex]\(\Delta H_2 = -566 \text{kJ}\)[/tex]
- Equation 3: [tex]\(2\text{CH}_3\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 4\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_3 = -1430 \text{kJ}\)[/tex]
2. Manipulate the given equations to derive the target reaction:
- First, start with the reverse of the third equation:
[tex]\[ 2\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{OH} + 3\text{O}_2 \quad (\Delta H_3' = +1430 \text{kJ}) \][/tex]
- Next, take half of the second equation:
[tex]\[ \text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 \quad \left(\frac{\Delta H_2}{2} = -283 \text{kJ}\right) \][/tex]
3. Combine the above steps:
- Use the first equation as it is:
[tex]\[ 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad (\Delta H_1 = -571 \text{kJ}) \][/tex]
4. Find the overall enthalpy change. According to Hess's Law, sum up the enthalpies:
- For the reverse of equation 3:
[tex]\[ \Delta H_3' = +1430 \text{kJ} \][/tex]
- For half of equation 2:
[tex]\[ \frac{\Delta H_2}{2} = -283 \text{kJ} \][/tex]
- For half of equation 1:
[tex]\[ \frac{\Delta H_1}{2} = \frac{-571}{2} = -285.5 \text{kJ} \][/tex]
5. Sum the enthalpies:
- The total enthalpy change for the reaction:
[tex]\[ \Delta H_{\text{total}} = \left(\frac{\Delta H_1}{2}\right) + \left(\frac{\Delta H_2}{2}\right) + \left(\frac{\Delta H_3}{2}\right) \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{total}} = -285.5 \text{kJ} + (-283 \text{kJ}) + 715 \text{kJ} = 146.5 \text{kJ} \][/tex]
Therefore, the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex] is [tex]\( \boxed{+146.5 \text{kJ}} \)[/tex].
1. Identify the given thermochemical equations and their enthalpies:
- Equation 1: [tex]\(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_1 = -571 \text{kJ}\)[/tex]
- Equation 2: [tex]\(2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2\)[/tex], [tex]\(\Delta H_2 = -566 \text{kJ}\)[/tex]
- Equation 3: [tex]\(2\text{CH}_3\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 4\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_3 = -1430 \text{kJ}\)[/tex]
2. Manipulate the given equations to derive the target reaction:
- First, start with the reverse of the third equation:
[tex]\[ 2\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{OH} + 3\text{O}_2 \quad (\Delta H_3' = +1430 \text{kJ}) \][/tex]
- Next, take half of the second equation:
[tex]\[ \text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 \quad \left(\frac{\Delta H_2}{2} = -283 \text{kJ}\right) \][/tex]
3. Combine the above steps:
- Use the first equation as it is:
[tex]\[ 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad (\Delta H_1 = -571 \text{kJ}) \][/tex]
4. Find the overall enthalpy change. According to Hess's Law, sum up the enthalpies:
- For the reverse of equation 3:
[tex]\[ \Delta H_3' = +1430 \text{kJ} \][/tex]
- For half of equation 2:
[tex]\[ \frac{\Delta H_2}{2} = -283 \text{kJ} \][/tex]
- For half of equation 1:
[tex]\[ \frac{\Delta H_1}{2} = \frac{-571}{2} = -285.5 \text{kJ} \][/tex]
5. Sum the enthalpies:
- The total enthalpy change for the reaction:
[tex]\[ \Delta H_{\text{total}} = \left(\frac{\Delta H_1}{2}\right) + \left(\frac{\Delta H_2}{2}\right) + \left(\frac{\Delta H_3}{2}\right) \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{total}} = -285.5 \text{kJ} + (-283 \text{kJ}) + 715 \text{kJ} = 146.5 \text{kJ} \][/tex]
Therefore, the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex] is [tex]\( \boxed{+146.5 \text{kJ}} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.