madey21
Answered

Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Calculate the enthalpy for this reaction:
[tex]\[ CO + 2H_2 \rightarrow CH_3OH \][/tex]
given the following thermochemical equations:

1) [tex]\[ 2H_2 + O_2 \rightarrow 2H_2O, \Delta H_1 = -571 \text{ kJ} \][/tex]
2) [tex]\[ 2CO + O_2 \rightarrow 2CO_2, \Delta H_2 = -566 \text{ kJ} \][/tex]
3) [tex]\[ 2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O, \Delta H_3 = -1430 \text{ kJ} \][/tex]

[tex]\[ \Delta H_{\text{reaction}} = [?] \text{ kJ} \][/tex]

Enter either a "+" or "-" sign and the magnitude. Use significant figures.


Sagot :

To find the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex], we can use Hess's Law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for any set of reactions that add up to the overall reaction. Here are the steps to find the enthalpy change:

1. Identify the given thermochemical equations and their enthalpies:
- Equation 1: [tex]\(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_1 = -571 \text{kJ}\)[/tex]
- Equation 2: [tex]\(2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2\)[/tex], [tex]\(\Delta H_2 = -566 \text{kJ}\)[/tex]
- Equation 3: [tex]\(2\text{CH}_3\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 4\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_3 = -1430 \text{kJ}\)[/tex]

2. Manipulate the given equations to derive the target reaction:
- First, start with the reverse of the third equation:
[tex]\[ 2\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{OH} + 3\text{O}_2 \quad (\Delta H_3' = +1430 \text{kJ}) \][/tex]
- Next, take half of the second equation:
[tex]\[ \text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 \quad \left(\frac{\Delta H_2}{2} = -283 \text{kJ}\right) \][/tex]

3. Combine the above steps:
- Use the first equation as it is:
[tex]\[ 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad (\Delta H_1 = -571 \text{kJ}) \][/tex]

4. Find the overall enthalpy change. According to Hess's Law, sum up the enthalpies:
- For the reverse of equation 3:
[tex]\[ \Delta H_3' = +1430 \text{kJ} \][/tex]
- For half of equation 2:
[tex]\[ \frac{\Delta H_2}{2} = -283 \text{kJ} \][/tex]
- For half of equation 1:
[tex]\[ \frac{\Delta H_1}{2} = \frac{-571}{2} = -285.5 \text{kJ} \][/tex]

5. Sum the enthalpies:
- The total enthalpy change for the reaction:
[tex]\[ \Delta H_{\text{total}} = \left(\frac{\Delta H_1}{2}\right) + \left(\frac{\Delta H_2}{2}\right) + \left(\frac{\Delta H_3}{2}\right) \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{total}} = -285.5 \text{kJ} + (-283 \text{kJ}) + 715 \text{kJ} = 146.5 \text{kJ} \][/tex]

Therefore, the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex] is [tex]\( \boxed{+146.5 \text{kJ}} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.