Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex], we can use Hess's Law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for any set of reactions that add up to the overall reaction. Here are the steps to find the enthalpy change:
1. Identify the given thermochemical equations and their enthalpies:
- Equation 1: [tex]\(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_1 = -571 \text{kJ}\)[/tex]
- Equation 2: [tex]\(2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2\)[/tex], [tex]\(\Delta H_2 = -566 \text{kJ}\)[/tex]
- Equation 3: [tex]\(2\text{CH}_3\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 4\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_3 = -1430 \text{kJ}\)[/tex]
2. Manipulate the given equations to derive the target reaction:
- First, start with the reverse of the third equation:
[tex]\[ 2\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{OH} + 3\text{O}_2 \quad (\Delta H_3' = +1430 \text{kJ}) \][/tex]
- Next, take half of the second equation:
[tex]\[ \text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 \quad \left(\frac{\Delta H_2}{2} = -283 \text{kJ}\right) \][/tex]
3. Combine the above steps:
- Use the first equation as it is:
[tex]\[ 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad (\Delta H_1 = -571 \text{kJ}) \][/tex]
4. Find the overall enthalpy change. According to Hess's Law, sum up the enthalpies:
- For the reverse of equation 3:
[tex]\[ \Delta H_3' = +1430 \text{kJ} \][/tex]
- For half of equation 2:
[tex]\[ \frac{\Delta H_2}{2} = -283 \text{kJ} \][/tex]
- For half of equation 1:
[tex]\[ \frac{\Delta H_1}{2} = \frac{-571}{2} = -285.5 \text{kJ} \][/tex]
5. Sum the enthalpies:
- The total enthalpy change for the reaction:
[tex]\[ \Delta H_{\text{total}} = \left(\frac{\Delta H_1}{2}\right) + \left(\frac{\Delta H_2}{2}\right) + \left(\frac{\Delta H_3}{2}\right) \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{total}} = -285.5 \text{kJ} + (-283 \text{kJ}) + 715 \text{kJ} = 146.5 \text{kJ} \][/tex]
Therefore, the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex] is [tex]\( \boxed{+146.5 \text{kJ}} \)[/tex].
1. Identify the given thermochemical equations and their enthalpies:
- Equation 1: [tex]\(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_1 = -571 \text{kJ}\)[/tex]
- Equation 2: [tex]\(2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2\)[/tex], [tex]\(\Delta H_2 = -566 \text{kJ}\)[/tex]
- Equation 3: [tex]\(2\text{CH}_3\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 4\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_3 = -1430 \text{kJ}\)[/tex]
2. Manipulate the given equations to derive the target reaction:
- First, start with the reverse of the third equation:
[tex]\[ 2\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{OH} + 3\text{O}_2 \quad (\Delta H_3' = +1430 \text{kJ}) \][/tex]
- Next, take half of the second equation:
[tex]\[ \text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 \quad \left(\frac{\Delta H_2}{2} = -283 \text{kJ}\right) \][/tex]
3. Combine the above steps:
- Use the first equation as it is:
[tex]\[ 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad (\Delta H_1 = -571 \text{kJ}) \][/tex]
4. Find the overall enthalpy change. According to Hess's Law, sum up the enthalpies:
- For the reverse of equation 3:
[tex]\[ \Delta H_3' = +1430 \text{kJ} \][/tex]
- For half of equation 2:
[tex]\[ \frac{\Delta H_2}{2} = -283 \text{kJ} \][/tex]
- For half of equation 1:
[tex]\[ \frac{\Delta H_1}{2} = \frac{-571}{2} = -285.5 \text{kJ} \][/tex]
5. Sum the enthalpies:
- The total enthalpy change for the reaction:
[tex]\[ \Delta H_{\text{total}} = \left(\frac{\Delta H_1}{2}\right) + \left(\frac{\Delta H_2}{2}\right) + \left(\frac{\Delta H_3}{2}\right) \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{total}} = -285.5 \text{kJ} + (-283 \text{kJ}) + 715 \text{kJ} = 146.5 \text{kJ} \][/tex]
Therefore, the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex] is [tex]\( \boxed{+146.5 \text{kJ}} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.