Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the number of solutions for the quadratic equation [tex]\(2x^2 + 8x + 8 = 0\)[/tex], we need to compute and analyze the discriminant. The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
where [tex]\( a, b, \)[/tex] and [tex]\( c \)[/tex] are the coefficients of the equation. In this case:
[tex]\[ a = 2, \quad b = 8, \quad c = 8 \][/tex]
Plugging these values into the formula for the discriminant, we get:
[tex]\[ \Delta = 8^2 - 4 \cdot 2 \cdot 8 \][/tex]
Calculating the discriminant step-by-step:
[tex]\[ 8^2 = 64 \][/tex]
and
[tex]\[ 4 \cdot 2 \cdot 8 = 64 \][/tex]
So,
[tex]\[ \Delta = 64 - 64 = 0 \][/tex]
The discriminant [tex]\(\Delta\)[/tex] is equal to 0. The value of the discriminant determines the number and nature of the solutions:
- If [tex]\(\Delta > 0\)[/tex], the equation has 2 distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly 1 real solution.
- If [tex]\(\Delta < 0\)[/tex], the equation has no real solutions.
Since the discriminant [tex]\(\Delta = 0\)[/tex] in this scenario, the quadratic equation [tex]\(2x^2 + 8x + 8 = 0\)[/tex] has exactly 1 real solution.
Thus, the correct answer is:
[tex]\[ \boxed{1 \text{ real solution}} \][/tex]
[tex]\[ \Delta = b^2 - 4ac \][/tex]
where [tex]\( a, b, \)[/tex] and [tex]\( c \)[/tex] are the coefficients of the equation. In this case:
[tex]\[ a = 2, \quad b = 8, \quad c = 8 \][/tex]
Plugging these values into the formula for the discriminant, we get:
[tex]\[ \Delta = 8^2 - 4 \cdot 2 \cdot 8 \][/tex]
Calculating the discriminant step-by-step:
[tex]\[ 8^2 = 64 \][/tex]
and
[tex]\[ 4 \cdot 2 \cdot 8 = 64 \][/tex]
So,
[tex]\[ \Delta = 64 - 64 = 0 \][/tex]
The discriminant [tex]\(\Delta\)[/tex] is equal to 0. The value of the discriminant determines the number and nature of the solutions:
- If [tex]\(\Delta > 0\)[/tex], the equation has 2 distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], the equation has exactly 1 real solution.
- If [tex]\(\Delta < 0\)[/tex], the equation has no real solutions.
Since the discriminant [tex]\(\Delta = 0\)[/tex] in this scenario, the quadratic equation [tex]\(2x^2 + 8x + 8 = 0\)[/tex] has exactly 1 real solution.
Thus, the correct answer is:
[tex]\[ \boxed{1 \text{ real solution}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.