Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure! Let's derive the equation of the line that passes through the point (6, -3) and has a slope of [tex]\( \frac{1}{2} \)[/tex].
1. Identify the form of the equation:
The general form of a line's equation with slope [tex]\( m \)[/tex] and passing through point [tex]\((x_1, y_1) \)[/tex] is given by the point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m = \frac{1}{2} \)[/tex], [tex]\( x_1 = 6 \)[/tex], and [tex]\( y_1 = -3 \)[/tex].
2. Substitute the values:
Plugging these values into the point-slope form, we get:
[tex]\[ y - (-3) = \frac{1}{2}(x - 6) \][/tex]
Simplifying this, we obtain:
[tex]\[ y + 3 = \frac{1}{2}(x - 6) \][/tex]
3. Convert to slope-intercept form:
To convert to the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y + 3 = \frac{1}{2}x - \frac{6}{2} \][/tex]
[tex]\[ y + 3 = \frac{1}{2}x - 3 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
Isolating [tex]\( y \)[/tex] on one side of the equation:
[tex]\[ y = \frac{1}{2}x - 3 - 3 \][/tex]
[tex]\[ y = \frac{1}{2}x - 6 \][/tex]
Hence, the equation of the line that passes through the point (6, -3) and has a slope of [tex]\(\frac{1}{2}\)[/tex] is:
[tex]\[ y = \frac{1}{2}x - 6 \][/tex]
So, the correct option is [tex]\(y = \frac{1}{2}x - 6\)[/tex].
1. Identify the form of the equation:
The general form of a line's equation with slope [tex]\( m \)[/tex] and passing through point [tex]\((x_1, y_1) \)[/tex] is given by the point-slope form:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m = \frac{1}{2} \)[/tex], [tex]\( x_1 = 6 \)[/tex], and [tex]\( y_1 = -3 \)[/tex].
2. Substitute the values:
Plugging these values into the point-slope form, we get:
[tex]\[ y - (-3) = \frac{1}{2}(x - 6) \][/tex]
Simplifying this, we obtain:
[tex]\[ y + 3 = \frac{1}{2}(x - 6) \][/tex]
3. Convert to slope-intercept form:
To convert to the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y + 3 = \frac{1}{2}x - \frac{6}{2} \][/tex]
[tex]\[ y + 3 = \frac{1}{2}x - 3 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
Isolating [tex]\( y \)[/tex] on one side of the equation:
[tex]\[ y = \frac{1}{2}x - 3 - 3 \][/tex]
[tex]\[ y = \frac{1}{2}x - 6 \][/tex]
Hence, the equation of the line that passes through the point (6, -3) and has a slope of [tex]\(\frac{1}{2}\)[/tex] is:
[tex]\[ y = \frac{1}{2}x - 6 \][/tex]
So, the correct option is [tex]\(y = \frac{1}{2}x - 6\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.