Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the other possible solution for the quadratic equation [tex]\( x^2 + 8x + 15 = 0 \)[/tex], given that [tex]\( x = -5 \)[/tex] is one of the solutions, we can follow these steps:
1. Identify the standard form of the quadratic equation:
The given equation is [tex]\( x^2 + 8x + 15 = 0 \)[/tex].
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 15 \)[/tex].
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting [tex]\( a = 1 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 15 \)[/tex]:
[tex]\[ \Delta = 8^2 - 4 \cdot 1 \cdot 15 = 64 - 60 = 4 \][/tex]
3. Use the quadratic formula to find the solutions:
The quadratic formula for the solutions [tex]\( x \)[/tex] of [tex]\( ax^2 + bx + c = 0 \)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting [tex]\( a = 1 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\(\Delta = 4\)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{4}}{2 \cdot 1} = \frac{-8 \pm 2}{2} \][/tex]
4. Find the two possible values of [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-8 + 2}{2} = \frac{-6}{2} = -3 \][/tex]
[tex]\[ x_2 = \frac{-8 - 2}{2} = \frac{-10}{2} = -5 \][/tex]
Given that one of the solutions is [tex]\( x = -5 \)[/tex], the other solution must be:
[tex]\[ x = -3 \][/tex]
Thus, the other value of [tex]\( x \)[/tex] for the quadratic equation [tex]\( x^2 + 8x + 15 = 0 \)[/tex] is [tex]\(-3\)[/tex].
The correct answer is (C) -3.
1. Identify the standard form of the quadratic equation:
The given equation is [tex]\( x^2 + 8x + 15 = 0 \)[/tex].
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 15 \)[/tex].
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting [tex]\( a = 1 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 15 \)[/tex]:
[tex]\[ \Delta = 8^2 - 4 \cdot 1 \cdot 15 = 64 - 60 = 4 \][/tex]
3. Use the quadratic formula to find the solutions:
The quadratic formula for the solutions [tex]\( x \)[/tex] of [tex]\( ax^2 + bx + c = 0 \)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting [tex]\( a = 1 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\(\Delta = 4\)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{4}}{2 \cdot 1} = \frac{-8 \pm 2}{2} \][/tex]
4. Find the two possible values of [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-8 + 2}{2} = \frac{-6}{2} = -3 \][/tex]
[tex]\[ x_2 = \frac{-8 - 2}{2} = \frac{-10}{2} = -5 \][/tex]
Given that one of the solutions is [tex]\( x = -5 \)[/tex], the other solution must be:
[tex]\[ x = -3 \][/tex]
Thus, the other value of [tex]\( x \)[/tex] for the quadratic equation [tex]\( x^2 + 8x + 15 = 0 \)[/tex] is [tex]\(-3\)[/tex].
The correct answer is (C) -3.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.