Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To graph the function [tex]\( y = 3 \cdot 7^{-x} + 2 \)[/tex] using transformations, follow these step-by-step instructions:
1. Start with the basic exponential function [tex]\( y = 7^x \)[/tex]:
- The graph of [tex]\( y = 7^x \)[/tex] is an exponential growth curve that passes through the point [tex]\( (0, 1) \)[/tex] and increases rapidly as [tex]\( x \)[/tex] increases. This is our base function.
2. Reflect this graph over the y-axis to get [tex]\( y = 7^{-x} \)[/tex]:
- To reflect the graph over the y-axis, we replace [tex]\( x \)[/tex] with [tex]\( -x \)[/tex]. The graph of [tex]\( y = 7^{-x} \)[/tex] is a decreasing exponential function that passes through the point [tex]\( (0, 1) \)[/tex] and decreases towards zero as [tex]\( x \)[/tex] increases. This reflection changes the direction of the growth, turning it into a decay.
3. Stretch the graph vertically by a factor of 3 to get [tex]\( y = 3 \cdot 7^{-x} \)[/tex]:
- To stretch the graph vertically, multiply the function by 3. This alters the graph so that for any given [tex]\( x \)[/tex], the value of [tex]\( y \)[/tex] is tripled. This means the graph now passes through the point [tex]\( (0, 3) \)[/tex] and retains its general decreasing shape but is stretched taller.
4. Translate the graph upwards by 2 units to get [tex]\( y = 3 \cdot 7^{-x} + 2 \)[/tex]:
- To translate the graph upwards, add 2 to the entire function. This means that every point on the graph is moved up by 2 units. The new graph now passes through the point [tex]\( (0, 5) \)[/tex]. The horizontal asymptote of the function also shifts from [tex]\( y = 0 \)[/tex] to [tex]\( y = 2 \)[/tex].
To summarize, the resulting graph of [tex]\( y = 3 \cdot 7^{-x} + 2 \)[/tex] can be visualized through the following transformations applied to the basic exponential function [tex]\( y = 7^x \)[/tex]:
- Reflect over the y-axis.
- Stretch vertically by a factor of 3.
- Translate upwards by 2 units.
These transformations give us the final graph which is a vertically stretched and upwards shifted version of the reflected exponential decay.
1. Start with the basic exponential function [tex]\( y = 7^x \)[/tex]:
- The graph of [tex]\( y = 7^x \)[/tex] is an exponential growth curve that passes through the point [tex]\( (0, 1) \)[/tex] and increases rapidly as [tex]\( x \)[/tex] increases. This is our base function.
2. Reflect this graph over the y-axis to get [tex]\( y = 7^{-x} \)[/tex]:
- To reflect the graph over the y-axis, we replace [tex]\( x \)[/tex] with [tex]\( -x \)[/tex]. The graph of [tex]\( y = 7^{-x} \)[/tex] is a decreasing exponential function that passes through the point [tex]\( (0, 1) \)[/tex] and decreases towards zero as [tex]\( x \)[/tex] increases. This reflection changes the direction of the growth, turning it into a decay.
3. Stretch the graph vertically by a factor of 3 to get [tex]\( y = 3 \cdot 7^{-x} \)[/tex]:
- To stretch the graph vertically, multiply the function by 3. This alters the graph so that for any given [tex]\( x \)[/tex], the value of [tex]\( y \)[/tex] is tripled. This means the graph now passes through the point [tex]\( (0, 3) \)[/tex] and retains its general decreasing shape but is stretched taller.
4. Translate the graph upwards by 2 units to get [tex]\( y = 3 \cdot 7^{-x} + 2 \)[/tex]:
- To translate the graph upwards, add 2 to the entire function. This means that every point on the graph is moved up by 2 units. The new graph now passes through the point [tex]\( (0, 5) \)[/tex]. The horizontal asymptote of the function also shifts from [tex]\( y = 0 \)[/tex] to [tex]\( y = 2 \)[/tex].
To summarize, the resulting graph of [tex]\( y = 3 \cdot 7^{-x} + 2 \)[/tex] can be visualized through the following transformations applied to the basic exponential function [tex]\( y = 7^x \)[/tex]:
- Reflect over the y-axis.
- Stretch vertically by a factor of 3.
- Translate upwards by 2 units.
These transformations give us the final graph which is a vertically stretched and upwards shifted version of the reflected exponential decay.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.