Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's determine the degrees of each polynomial expression given in the table. The degree of a polynomial is the highest power of the variable [tex]\(x\)[/tex] in the polynomial.
1. Polynomial: [tex]\(x-9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1
2. Polynomial: [tex]\(-4x^2 - 6x + 9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 2 ([tex]\(x^2\)[/tex]).
- Degree: 2
3. Polynomial: [tex]\(x^2 - 2x + 9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 2 ([tex]\(x^2\)[/tex]).
- Degree: 2
4. Polynomial: [tex]\(-3\)[/tex]
- This is a constant polynomial. The degree of a non-zero constant polynomial is 0.
- Degree: 0
5. Polynomial: [tex]\(3x - 2\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1
6. Polynomial: [tex]\(6x + 2\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1
Now, let's add the missing degrees to the table:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Polynomial Expression} & \text{Degree} \\ \hline x-9 & 1 \\ \hline -4 x^2-6 x+9 & 2 \\ \hline x^2-2 x+9 & 2 \\ \hline -3 & 0 \\ \hline 3 x-2 & 1 \\ \hline 6 x+2 & 1 \\ \hline 5 & 0 \\ \hline \end{tabular} \][/tex]
To summarize, the degrees are as follows:
- [tex]\(x-9: 1\)[/tex]
- [tex]\(-4x^2 - 6x + 9: 2\)[/tex]
- [tex]\(x^2 - 2x + 9: 2\)[/tex]
- [tex]\(-3: 0\)[/tex]
- [tex]\(3x - 2: 1\)[/tex]
- [tex]\(6x + 2: 1\)[/tex]
- [tex]\(5: 0\)[/tex]
This completes our table and confirms the degrees of each polynomial.
1. Polynomial: [tex]\(x-9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1
2. Polynomial: [tex]\(-4x^2 - 6x + 9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 2 ([tex]\(x^2\)[/tex]).
- Degree: 2
3. Polynomial: [tex]\(x^2 - 2x + 9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 2 ([tex]\(x^2\)[/tex]).
- Degree: 2
4. Polynomial: [tex]\(-3\)[/tex]
- This is a constant polynomial. The degree of a non-zero constant polynomial is 0.
- Degree: 0
5. Polynomial: [tex]\(3x - 2\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1
6. Polynomial: [tex]\(6x + 2\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1
Now, let's add the missing degrees to the table:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Polynomial Expression} & \text{Degree} \\ \hline x-9 & 1 \\ \hline -4 x^2-6 x+9 & 2 \\ \hline x^2-2 x+9 & 2 \\ \hline -3 & 0 \\ \hline 3 x-2 & 1 \\ \hline 6 x+2 & 1 \\ \hline 5 & 0 \\ \hline \end{tabular} \][/tex]
To summarize, the degrees are as follows:
- [tex]\(x-9: 1\)[/tex]
- [tex]\(-4x^2 - 6x + 9: 2\)[/tex]
- [tex]\(x^2 - 2x + 9: 2\)[/tex]
- [tex]\(-3: 0\)[/tex]
- [tex]\(3x - 2: 1\)[/tex]
- [tex]\(6x + 2: 1\)[/tex]
- [tex]\(5: 0\)[/tex]
This completes our table and confirms the degrees of each polynomial.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.