Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the quotient of the given fractions [tex]\(\frac{2}{3}\)[/tex] and [tex]\(-\frac{7}{12}\)[/tex], follow these steps:
1. Rewrite the Problem as a Division of Fractions:
The expression [tex]\(\frac{\frac{2}{3}}{-\frac{7}{12}}\)[/tex] needs to be read as a division of fractions. In fraction form, this can be written as:
[tex]\( \frac{2}{3} \div -\frac{7}{12} \)[/tex]
2. Invert the Divisor and Multiply:
When dividing by a fraction, you multiply by its reciprocal. The reciprocal of [tex]\(-\frac{7}{12}\)[/tex] is [tex]\(-\frac{12}{7}\)[/tex]. So, the problem changes to:
[tex]\( \frac{2}{3} \times -\frac{12}{7} \)[/tex]
3. Multiply the Numerators and Denominators:
Now, we multiply the fractions directly:
[tex]\[ \frac{2 \times -12}{3 \times 7} = \frac{-24}{21} \][/tex]
4. Simplify the Result:
To simplify [tex]\(\frac{-24}{21}\)[/tex], we need to find the greatest common divisor (GCD) of 24 and 21. The GCD of 24 and 21 is 3. Therefore, we divide the numerator and the denominator by 3:
[tex]\[ \frac{-24 \div 3}{21 \div 3} = \frac{-8}{7} \][/tex]
So, the completely simplified quotient of [tex]\(\frac{2}{3}\)[/tex] divided by [tex]\(-\frac{7}{12}\)[/tex] is [tex]\(\frac{-8}{7}\)[/tex].
By evaluating [tex]\(\frac{-8}{7}\)[/tex] as a decimal, we get approximately:
[tex]\[ -1.1428571428571428 \][/tex]
Thus, the quotient and the simplified fraction is [tex]\( \boxed{\frac{-8}{7}} \)[/tex] which is [tex]\(-1.1428571428571428\)[/tex].
1. Rewrite the Problem as a Division of Fractions:
The expression [tex]\(\frac{\frac{2}{3}}{-\frac{7}{12}}\)[/tex] needs to be read as a division of fractions. In fraction form, this can be written as:
[tex]\( \frac{2}{3} \div -\frac{7}{12} \)[/tex]
2. Invert the Divisor and Multiply:
When dividing by a fraction, you multiply by its reciprocal. The reciprocal of [tex]\(-\frac{7}{12}\)[/tex] is [tex]\(-\frac{12}{7}\)[/tex]. So, the problem changes to:
[tex]\( \frac{2}{3} \times -\frac{12}{7} \)[/tex]
3. Multiply the Numerators and Denominators:
Now, we multiply the fractions directly:
[tex]\[ \frac{2 \times -12}{3 \times 7} = \frac{-24}{21} \][/tex]
4. Simplify the Result:
To simplify [tex]\(\frac{-24}{21}\)[/tex], we need to find the greatest common divisor (GCD) of 24 and 21. The GCD of 24 and 21 is 3. Therefore, we divide the numerator and the denominator by 3:
[tex]\[ \frac{-24 \div 3}{21 \div 3} = \frac{-8}{7} \][/tex]
So, the completely simplified quotient of [tex]\(\frac{2}{3}\)[/tex] divided by [tex]\(-\frac{7}{12}\)[/tex] is [tex]\(\frac{-8}{7}\)[/tex].
By evaluating [tex]\(\frac{-8}{7}\)[/tex] as a decimal, we get approximately:
[tex]\[ -1.1428571428571428 \][/tex]
Thus, the quotient and the simplified fraction is [tex]\( \boxed{\frac{-8}{7}} \)[/tex] which is [tex]\(-1.1428571428571428\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.