Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the points at which the given piecewise function [tex]\( f(x) \)[/tex] is discontinuous, we need to check the continuity at the boundaries of the piecewise intervals.
The function [tex]\( f(x) \)[/tex] is defined as follows:
[tex]\[ f(x) = \begin{cases} x + 2 & \text{if } x \leq 0 \\ 2 & \text{if } 0 < x \leq 1 \\ x^2 + 2 & \text{if } x > 1 \end{cases} \][/tex]
The boundaries of the intervals are at [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex]. We'll check for continuity at these points by verifying if the left-hand limit, right-hand limit, and the function value at these points match.
### Check at [tex]\( x = 0 \)[/tex]:
1. Left-hand limit as [tex]\( x \to 0^- \)[/tex]:
[tex]\[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + 2) = 0 + 2 = 2 \][/tex]
2. Right-hand limit as [tex]\( x \to 0^+ \)[/tex]:
[tex]\[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2 = 2 \][/tex]
3. Function value at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0 + 2 = 2 \][/tex]
Since the left-hand limit, right-hand limit, and the function value at [tex]\( x = 0 \)[/tex] are all equal to 2, the function [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex].
### Check at [tex]\( x = 1 \)[/tex]:
1. Left-hand limit as [tex]\( x \to 1^- \)[/tex]:
[tex]\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} 2 = 2 \][/tex]
2. Right-hand limit as [tex]\( x \to 1^+ \)[/tex]:
[tex]\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 + 2) = 1^2 + 2 = 1 + 2 = 3 \][/tex]
3. Function value at [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2 \][/tex]
At [tex]\( x = 1 \)[/tex], the left-hand limit is 2, while the right-hand limit is 3. Since these limits are not equal, the function [tex]\( f(x) \)[/tex] is discontinuous at [tex]\( x = 1 \)[/tex].
### Conclusion:
The function [tex]\( f(x) \)[/tex] is discontinuous at [tex]\( x = 1 \)[/tex]. This is the only point among the boundaries of the piecewise function intervals where the function exhibits discontinuity.
The function [tex]\( f(x) \)[/tex] is defined as follows:
[tex]\[ f(x) = \begin{cases} x + 2 & \text{if } x \leq 0 \\ 2 & \text{if } 0 < x \leq 1 \\ x^2 + 2 & \text{if } x > 1 \end{cases} \][/tex]
The boundaries of the intervals are at [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex]. We'll check for continuity at these points by verifying if the left-hand limit, right-hand limit, and the function value at these points match.
### Check at [tex]\( x = 0 \)[/tex]:
1. Left-hand limit as [tex]\( x \to 0^- \)[/tex]:
[tex]\[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + 2) = 0 + 2 = 2 \][/tex]
2. Right-hand limit as [tex]\( x \to 0^+ \)[/tex]:
[tex]\[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2 = 2 \][/tex]
3. Function value at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0 + 2 = 2 \][/tex]
Since the left-hand limit, right-hand limit, and the function value at [tex]\( x = 0 \)[/tex] are all equal to 2, the function [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex].
### Check at [tex]\( x = 1 \)[/tex]:
1. Left-hand limit as [tex]\( x \to 1^- \)[/tex]:
[tex]\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} 2 = 2 \][/tex]
2. Right-hand limit as [tex]\( x \to 1^+ \)[/tex]:
[tex]\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 + 2) = 1^2 + 2 = 1 + 2 = 3 \][/tex]
3. Function value at [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2 \][/tex]
At [tex]\( x = 1 \)[/tex], the left-hand limit is 2, while the right-hand limit is 3. Since these limits are not equal, the function [tex]\( f(x) \)[/tex] is discontinuous at [tex]\( x = 1 \)[/tex].
### Conclusion:
The function [tex]\( f(x) \)[/tex] is discontinuous at [tex]\( x = 1 \)[/tex]. This is the only point among the boundaries of the piecewise function intervals where the function exhibits discontinuity.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.