Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the points at which the given piecewise function [tex]\( f(x) \)[/tex] is discontinuous, we need to check the continuity at the boundaries of the piecewise intervals.
The function [tex]\( f(x) \)[/tex] is defined as follows:
[tex]\[ f(x) = \begin{cases} x + 2 & \text{if } x \leq 0 \\ 2 & \text{if } 0 < x \leq 1 \\ x^2 + 2 & \text{if } x > 1 \end{cases} \][/tex]
The boundaries of the intervals are at [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex]. We'll check for continuity at these points by verifying if the left-hand limit, right-hand limit, and the function value at these points match.
### Check at [tex]\( x = 0 \)[/tex]:
1. Left-hand limit as [tex]\( x \to 0^- \)[/tex]:
[tex]\[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + 2) = 0 + 2 = 2 \][/tex]
2. Right-hand limit as [tex]\( x \to 0^+ \)[/tex]:
[tex]\[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2 = 2 \][/tex]
3. Function value at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0 + 2 = 2 \][/tex]
Since the left-hand limit, right-hand limit, and the function value at [tex]\( x = 0 \)[/tex] are all equal to 2, the function [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex].
### Check at [tex]\( x = 1 \)[/tex]:
1. Left-hand limit as [tex]\( x \to 1^- \)[/tex]:
[tex]\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} 2 = 2 \][/tex]
2. Right-hand limit as [tex]\( x \to 1^+ \)[/tex]:
[tex]\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 + 2) = 1^2 + 2 = 1 + 2 = 3 \][/tex]
3. Function value at [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2 \][/tex]
At [tex]\( x = 1 \)[/tex], the left-hand limit is 2, while the right-hand limit is 3. Since these limits are not equal, the function [tex]\( f(x) \)[/tex] is discontinuous at [tex]\( x = 1 \)[/tex].
### Conclusion:
The function [tex]\( f(x) \)[/tex] is discontinuous at [tex]\( x = 1 \)[/tex]. This is the only point among the boundaries of the piecewise function intervals where the function exhibits discontinuity.
The function [tex]\( f(x) \)[/tex] is defined as follows:
[tex]\[ f(x) = \begin{cases} x + 2 & \text{if } x \leq 0 \\ 2 & \text{if } 0 < x \leq 1 \\ x^2 + 2 & \text{if } x > 1 \end{cases} \][/tex]
The boundaries of the intervals are at [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex]. We'll check for continuity at these points by verifying if the left-hand limit, right-hand limit, and the function value at these points match.
### Check at [tex]\( x = 0 \)[/tex]:
1. Left-hand limit as [tex]\( x \to 0^- \)[/tex]:
[tex]\[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + 2) = 0 + 2 = 2 \][/tex]
2. Right-hand limit as [tex]\( x \to 0^+ \)[/tex]:
[tex]\[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2 = 2 \][/tex]
3. Function value at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0 + 2 = 2 \][/tex]
Since the left-hand limit, right-hand limit, and the function value at [tex]\( x = 0 \)[/tex] are all equal to 2, the function [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 0 \)[/tex].
### Check at [tex]\( x = 1 \)[/tex]:
1. Left-hand limit as [tex]\( x \to 1^- \)[/tex]:
[tex]\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} 2 = 2 \][/tex]
2. Right-hand limit as [tex]\( x \to 1^+ \)[/tex]:
[tex]\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 + 2) = 1^2 + 2 = 1 + 2 = 3 \][/tex]
3. Function value at [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 2 \][/tex]
At [tex]\( x = 1 \)[/tex], the left-hand limit is 2, while the right-hand limit is 3. Since these limits are not equal, the function [tex]\( f(x) \)[/tex] is discontinuous at [tex]\( x = 1 \)[/tex].
### Conclusion:
The function [tex]\( f(x) \)[/tex] is discontinuous at [tex]\( x = 1 \)[/tex]. This is the only point among the boundaries of the piecewise function intervals where the function exhibits discontinuity.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.