Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Graph the exponential function [tex]g(x)=3^x-2[/tex].

1. Plot two points on the graph of the function.
2. Draw the asymptote.
3. Click on the graph-a-function button.

Additionally, give the domain and range of the function using interval notation:

- Domain: [tex](-\infty, \infty)[/tex]
- Range: [tex][-2, \infty)[/tex]

Sagot :

To graph the exponential function [tex]\( g(x) = 3^x - 2 \)[/tex]:

1. Understand the Function's Behavior:
- The function [tex]\( g(x) = 3^x - 2 \)[/tex] is an exponential function shifted downward by 2 units.
- Horizontal Asymptote: The horizontal asymptote is determined by observing the behavior as [tex]\( x \to -\infty \)[/tex]. For [tex]\( g(x) \)[/tex], the function approaches [tex]\(-2\)[/tex], so the horizontal asymptote is [tex]\( y = -2 \)[/tex].
- Domain: The domain of [tex]\( g(x) \)[/tex] is all real numbers, written as [tex]\( (-\infty, \infty) \)[/tex].
- Range: Since an exponential function [tex]\( 3^x \)[/tex] always yields positive values and is shifted downwards by 2 units, the range is [tex]\( [-2, \infty) \)[/tex].

2. Choose Points to Plot:

- Point 1: When [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 3^0 - 2 = 1 - 2 = -1 \][/tex]
So, the point at [tex]\( x=0 \)[/tex] is (0, -1).

- Point 2: When [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = 3^1 - 2 = 3 - 2 = 1 \][/tex]
So, the point at [tex]\( x=1 \)[/tex] is (1, 1).

3. Graphing the Function:
- Draw the horizontal asymptote at [tex]\( y = -2 \)[/tex]. This helps guide the shape of the graph.
- Plot the points (0, -1) and (1, 1).
- Sketch the curve:
- As [tex]\( x \to -\infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\(-2\)[/tex] but never quite reaches it, hugging the horizontal asymptote.
- As [tex]\( x \to \infty \)[/tex], [tex]\( g(x) \)[/tex] increases exponentially without bound.

4. Graph Appearance:
- The graph will look like a standard exponential curve shifted down by 2 units.
- The key features are the points (0, -1) and (1, 1) and the horizontal asymptote [tex]\( y = -2 \)[/tex].

5. Conclusion on Domain and Range:
- Domain: The function [tex]\( g(x) = 3^x - 2 \)[/tex] is defined for all real values of [tex]\( x \)[/tex], so the domain is [tex]\( (-\infty, \infty) \)[/tex].
- Range: The lowest value the function can get close to is [tex]\(-2\)[/tex], but as [tex]\( x \)[/tex] increases, the function increases without bound. Therefore, the range is [tex]\( [-2, \infty) \)[/tex].

By following these steps, you can graph the function [tex]\( g(x) = 3^x - 2 \)[/tex] and identify its key characteristics, including its domain and range.