Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To graph the exponential function [tex]\( g(x) = 3^x - 2 \)[/tex]:
1. Understand the Function's Behavior:
- The function [tex]\( g(x) = 3^x - 2 \)[/tex] is an exponential function shifted downward by 2 units.
- Horizontal Asymptote: The horizontal asymptote is determined by observing the behavior as [tex]\( x \to -\infty \)[/tex]. For [tex]\( g(x) \)[/tex], the function approaches [tex]\(-2\)[/tex], so the horizontal asymptote is [tex]\( y = -2 \)[/tex].
- Domain: The domain of [tex]\( g(x) \)[/tex] is all real numbers, written as [tex]\( (-\infty, \infty) \)[/tex].
- Range: Since an exponential function [tex]\( 3^x \)[/tex] always yields positive values and is shifted downwards by 2 units, the range is [tex]\( [-2, \infty) \)[/tex].
2. Choose Points to Plot:
- Point 1: When [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 3^0 - 2 = 1 - 2 = -1 \][/tex]
So, the point at [tex]\( x=0 \)[/tex] is (0, -1).
- Point 2: When [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = 3^1 - 2 = 3 - 2 = 1 \][/tex]
So, the point at [tex]\( x=1 \)[/tex] is (1, 1).
3. Graphing the Function:
- Draw the horizontal asymptote at [tex]\( y = -2 \)[/tex]. This helps guide the shape of the graph.
- Plot the points (0, -1) and (1, 1).
- Sketch the curve:
- As [tex]\( x \to -\infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\(-2\)[/tex] but never quite reaches it, hugging the horizontal asymptote.
- As [tex]\( x \to \infty \)[/tex], [tex]\( g(x) \)[/tex] increases exponentially without bound.
4. Graph Appearance:
- The graph will look like a standard exponential curve shifted down by 2 units.
- The key features are the points (0, -1) and (1, 1) and the horizontal asymptote [tex]\( y = -2 \)[/tex].
5. Conclusion on Domain and Range:
- Domain: The function [tex]\( g(x) = 3^x - 2 \)[/tex] is defined for all real values of [tex]\( x \)[/tex], so the domain is [tex]\( (-\infty, \infty) \)[/tex].
- Range: The lowest value the function can get close to is [tex]\(-2\)[/tex], but as [tex]\( x \)[/tex] increases, the function increases without bound. Therefore, the range is [tex]\( [-2, \infty) \)[/tex].
By following these steps, you can graph the function [tex]\( g(x) = 3^x - 2 \)[/tex] and identify its key characteristics, including its domain and range.
1. Understand the Function's Behavior:
- The function [tex]\( g(x) = 3^x - 2 \)[/tex] is an exponential function shifted downward by 2 units.
- Horizontal Asymptote: The horizontal asymptote is determined by observing the behavior as [tex]\( x \to -\infty \)[/tex]. For [tex]\( g(x) \)[/tex], the function approaches [tex]\(-2\)[/tex], so the horizontal asymptote is [tex]\( y = -2 \)[/tex].
- Domain: The domain of [tex]\( g(x) \)[/tex] is all real numbers, written as [tex]\( (-\infty, \infty) \)[/tex].
- Range: Since an exponential function [tex]\( 3^x \)[/tex] always yields positive values and is shifted downwards by 2 units, the range is [tex]\( [-2, \infty) \)[/tex].
2. Choose Points to Plot:
- Point 1: When [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 3^0 - 2 = 1 - 2 = -1 \][/tex]
So, the point at [tex]\( x=0 \)[/tex] is (0, -1).
- Point 2: When [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = 3^1 - 2 = 3 - 2 = 1 \][/tex]
So, the point at [tex]\( x=1 \)[/tex] is (1, 1).
3. Graphing the Function:
- Draw the horizontal asymptote at [tex]\( y = -2 \)[/tex]. This helps guide the shape of the graph.
- Plot the points (0, -1) and (1, 1).
- Sketch the curve:
- As [tex]\( x \to -\infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\(-2\)[/tex] but never quite reaches it, hugging the horizontal asymptote.
- As [tex]\( x \to \infty \)[/tex], [tex]\( g(x) \)[/tex] increases exponentially without bound.
4. Graph Appearance:
- The graph will look like a standard exponential curve shifted down by 2 units.
- The key features are the points (0, -1) and (1, 1) and the horizontal asymptote [tex]\( y = -2 \)[/tex].
5. Conclusion on Domain and Range:
- Domain: The function [tex]\( g(x) = 3^x - 2 \)[/tex] is defined for all real values of [tex]\( x \)[/tex], so the domain is [tex]\( (-\infty, \infty) \)[/tex].
- Range: The lowest value the function can get close to is [tex]\(-2\)[/tex], but as [tex]\( x \)[/tex] increases, the function increases without bound. Therefore, the range is [tex]\( [-2, \infty) \)[/tex].
By following these steps, you can graph the function [tex]\( g(x) = 3^x - 2 \)[/tex] and identify its key characteristics, including its domain and range.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.