Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the expression [tex]\(\sqrt[3]{27 x^{-3}}\)[/tex], follow these steps:
1. Understand the expression: We need to find the cube root of [tex]\(27 x^{-3}\)[/tex].
2. Simplify the expression inside the cube root:
- We start with [tex]\(27 x^{-3}\)[/tex].
- Recall the property of exponents: [tex]\(a^{-n} = \frac{1}{a^n}\)[/tex]. Hence, [tex]\(x^{-3} = \frac{1}{x^3}\)[/tex].
- Substituting this back, we get [tex]\(27 x^{-3} = 27 \cdot \frac{1}{x^3} = \frac{27}{x^3}\)[/tex].
3. Find the cube root:
- We now need to find the cube root of [tex]\(\frac{27}{x^3}\)[/tex].
- The cube root of a fraction is the fraction of the cube roots: [tex]\(\sqrt[3]{\frac{27}{x^3}} = \frac{\sqrt[3]{27}}{\sqrt[3]{x^3}}\)[/tex].
4. Calculate the cube roots:
- [tex]\(\sqrt[3]{27} = 3\)[/tex] since [tex]\(3^3 = 27\)[/tex].
- [tex]\(\sqrt[3]{x^3} = x\)[/tex] since the cube root and cube cancel each other out.
5. Put it all together:
- Combining these, we get [tex]\(\frac{3}{x}\)[/tex].
6. Substitute the given value of [tex]\(x\)[/tex]:
- According to the given answer, [tex]\(x = 1\)[/tex].
7. Determine the final result:
- Substituting [tex]\(x = 1\)[/tex], we get [tex]\(\frac{3}{1} = 3\)[/tex].
Therefore, the value of [tex]\(\sqrt[3]{27 x^{-3}}\)[/tex] when [tex]\(x = 1\)[/tex] is [tex]\(3\)[/tex].
1. Understand the expression: We need to find the cube root of [tex]\(27 x^{-3}\)[/tex].
2. Simplify the expression inside the cube root:
- We start with [tex]\(27 x^{-3}\)[/tex].
- Recall the property of exponents: [tex]\(a^{-n} = \frac{1}{a^n}\)[/tex]. Hence, [tex]\(x^{-3} = \frac{1}{x^3}\)[/tex].
- Substituting this back, we get [tex]\(27 x^{-3} = 27 \cdot \frac{1}{x^3} = \frac{27}{x^3}\)[/tex].
3. Find the cube root:
- We now need to find the cube root of [tex]\(\frac{27}{x^3}\)[/tex].
- The cube root of a fraction is the fraction of the cube roots: [tex]\(\sqrt[3]{\frac{27}{x^3}} = \frac{\sqrt[3]{27}}{\sqrt[3]{x^3}}\)[/tex].
4. Calculate the cube roots:
- [tex]\(\sqrt[3]{27} = 3\)[/tex] since [tex]\(3^3 = 27\)[/tex].
- [tex]\(\sqrt[3]{x^3} = x\)[/tex] since the cube root and cube cancel each other out.
5. Put it all together:
- Combining these, we get [tex]\(\frac{3}{x}\)[/tex].
6. Substitute the given value of [tex]\(x\)[/tex]:
- According to the given answer, [tex]\(x = 1\)[/tex].
7. Determine the final result:
- Substituting [tex]\(x = 1\)[/tex], we get [tex]\(\frac{3}{1} = 3\)[/tex].
Therefore, the value of [tex]\(\sqrt[3]{27 x^{-3}}\)[/tex] when [tex]\(x = 1\)[/tex] is [tex]\(3\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.