Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step-by-step using the information provided.
We know that:
1. The bacteria in the bottle doubles every 5 minutes.
2. The bottle was fully filled with bacteria at 11:20 a.m.
To find out what fraction of the bottle was full at 11:15 a.m., we need to consider the doubling nature of the bacteria.
Here's the systematic thought process:
1. The bacteria population doubles every 5 minutes. This means if the bottle is fully filled at a specific time, it would have been half full 5 minutes earlier.
2. At 11:20 a.m., the bottle is fully filled, i.e., at its maximum capacity.
3. To determine the fraction of the bottle that was full 5 minutes before 11:20 a.m., we note that at 11:15 a.m., the bottle must have been half-full. This is because in the next 5 minutes (from 11:15 a.m. to 11:20 a.m.), the quantity of bacteria would double, filling the entire bottle by 11:20 a.m.
Through logical deduction:
- If the bottle is fully filled at 11:20 a.m., it must have been half-filled at 11:15 a.m. due to the doubling nature of the bacteria population.
Thus, the fraction of the bottle that was full at 11:15 a.m. is:
[tex]\[ \frac{1}{2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]
We know that:
1. The bacteria in the bottle doubles every 5 minutes.
2. The bottle was fully filled with bacteria at 11:20 a.m.
To find out what fraction of the bottle was full at 11:15 a.m., we need to consider the doubling nature of the bacteria.
Here's the systematic thought process:
1. The bacteria population doubles every 5 minutes. This means if the bottle is fully filled at a specific time, it would have been half full 5 minutes earlier.
2. At 11:20 a.m., the bottle is fully filled, i.e., at its maximum capacity.
3. To determine the fraction of the bottle that was full 5 minutes before 11:20 a.m., we note that at 11:15 a.m., the bottle must have been half-full. This is because in the next 5 minutes (from 11:15 a.m. to 11:20 a.m.), the quantity of bacteria would double, filling the entire bottle by 11:20 a.m.
Through logical deduction:
- If the bottle is fully filled at 11:20 a.m., it must have been half-filled at 11:15 a.m. due to the doubling nature of the bacteria population.
Thus, the fraction of the bottle that was full at 11:15 a.m. is:
[tex]\[ \frac{1}{2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.