Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, let's carefully analyze the descriptions of the functions and the given values.
First, we need to identify each function based on given characteristics and values.
### Functions Analyzed
1. Function [tex]\( g(x) \)[/tex]
- Given values of [tex]\( |g(x)| \)[/tex] at different points:
- [tex]\( x = -2 \rightarrow |g(x)| = 8 \)[/tex]
- [tex]\( x = -1 \rightarrow |g(x)| = 0.5 \)[/tex]
- [tex]\( x = 0 \rightarrow |g(x)| = -1 \)[/tex]
- [tex]\( x = 1 \rightarrow |g(x)| = -2.5 \)[/tex]
- Note: Since the absolute value function, there could be some clarifying points needed here.
2. Function [tex]\( h(x) \)[/tex]
- The description is "Function [tex]\( h \)[/tex] is the sum of 3 and four times the cube of [tex]\( x \)[/tex]."
- This means: [tex]\( h(x) = 3 + 4x^3 \)[/tex]
### Match Descriptions:
1. This function is decreasing over the longest interval:
- Analysis: A function that decreases over its entire domain or for a large part of it would fit this description.
- Since [tex]\( g(x) \)[/tex] has negative values and squares, more contextual detailing should help. But we know cubic functions tend to have local minima and maxima.
2. This function has the lowest [tex]\( y \)[/tex]-intercept:
- Analysis: Identify the y-intercepts of the functions. :
- The y-intercept of [tex]\( h(x) = 3 + 4x^3 \)[/tex] is [tex]\( h(0) = 3 \)[/tex].
3. This function has the highest [tex]\( y \)[/tex]-intercept:
- Compare the y-intercepts seen briefly, as previous variable-based lookups show.
4. This function is increasing over the longest interval:
- Analysis: The cubic function [tex]\( h(x) = 3 + 4x^3 \)[/tex] increases indefinitely for positive and negative values of [tex]\( x \)[/tex].
### Matching Statements:
- This function is decreasing over the longest interval:
- For further analyzing, since h(x) has been shown generic increasing slopes left, the component g(x) indicates potential decreases.
- This function has the lowest [tex]\( y \)[/tex]-intercept:
- Cross-check other intercepts w.r.t lesser values, verifies aligning calculations.
- This function has the highest [tex]\( y \)[/tex]-intercept:
- Seen intercept/h(x) "highest y-intercept" is three.
- This function is increasing over the longest interval:
- Matches function centric data analysis.
Finally, the matches are detailed for clear structural understanding.
```plaintext
-------------------------------------------------------------------------
Description | Matched Function
-------------------------------------------------------------------------
This function is decreasing over the largest interval | g(x) check-in necessary.
-------------------------------------------------------------------------
This function has the lowest y-intercept | lowest-to-value h(x)
-------------------------------------------------------------------------
This function has the highest y-intercept | Highest clarity re h(x)
-------------------------------------------------------------------------
This function is increasing over the longest interval | Valid, generic alignment to potential maximum domains
-------------------------------------------------------------------------
```
First, we need to identify each function based on given characteristics and values.
### Functions Analyzed
1. Function [tex]\( g(x) \)[/tex]
- Given values of [tex]\( |g(x)| \)[/tex] at different points:
- [tex]\( x = -2 \rightarrow |g(x)| = 8 \)[/tex]
- [tex]\( x = -1 \rightarrow |g(x)| = 0.5 \)[/tex]
- [tex]\( x = 0 \rightarrow |g(x)| = -1 \)[/tex]
- [tex]\( x = 1 \rightarrow |g(x)| = -2.5 \)[/tex]
- Note: Since the absolute value function, there could be some clarifying points needed here.
2. Function [tex]\( h(x) \)[/tex]
- The description is "Function [tex]\( h \)[/tex] is the sum of 3 and four times the cube of [tex]\( x \)[/tex]."
- This means: [tex]\( h(x) = 3 + 4x^3 \)[/tex]
### Match Descriptions:
1. This function is decreasing over the longest interval:
- Analysis: A function that decreases over its entire domain or for a large part of it would fit this description.
- Since [tex]\( g(x) \)[/tex] has negative values and squares, more contextual detailing should help. But we know cubic functions tend to have local minima and maxima.
2. This function has the lowest [tex]\( y \)[/tex]-intercept:
- Analysis: Identify the y-intercepts of the functions. :
- The y-intercept of [tex]\( h(x) = 3 + 4x^3 \)[/tex] is [tex]\( h(0) = 3 \)[/tex].
3. This function has the highest [tex]\( y \)[/tex]-intercept:
- Compare the y-intercepts seen briefly, as previous variable-based lookups show.
4. This function is increasing over the longest interval:
- Analysis: The cubic function [tex]\( h(x) = 3 + 4x^3 \)[/tex] increases indefinitely for positive and negative values of [tex]\( x \)[/tex].
### Matching Statements:
- This function is decreasing over the longest interval:
- For further analyzing, since h(x) has been shown generic increasing slopes left, the component g(x) indicates potential decreases.
- This function has the lowest [tex]\( y \)[/tex]-intercept:
- Cross-check other intercepts w.r.t lesser values, verifies aligning calculations.
- This function has the highest [tex]\( y \)[/tex]-intercept:
- Seen intercept/h(x) "highest y-intercept" is three.
- This function is increasing over the longest interval:
- Matches function centric data analysis.
Finally, the matches are detailed for clear structural understanding.
```plaintext
-------------------------------------------------------------------------
Description | Matched Function
-------------------------------------------------------------------------
This function is decreasing over the largest interval | g(x) check-in necessary.
-------------------------------------------------------------------------
This function has the lowest y-intercept | lowest-to-value h(x)
-------------------------------------------------------------------------
This function has the highest y-intercept | Highest clarity re h(x)
-------------------------------------------------------------------------
This function is increasing over the longest interval | Valid, generic alignment to potential maximum domains
-------------------------------------------------------------------------
```
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.