Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's determine the greatest common factor (GCF) for each of the mathematical expressions provided.
### Step-by-Step Solution:
1. Expression A: [tex]\(15x - 6\)[/tex]
- To find the GCF of the terms [tex]\(15x\)[/tex] and [tex]\(-6\)[/tex], we need to identify the largest number that divides both 15 and [tex]\(-6\)[/tex] without a remainder.
- The GCF of 15 and [tex]\(-6\)[/tex] is 3.
- Therefore, the GCF of [tex]\(15x - 6\)[/tex] is 3.
2. Expression B: [tex]\(24x + 18y\)[/tex]
- To find the GCF of the terms [tex]\(24x\)[/tex] and [tex]\(18y\)[/tex], we need to identify the largest number that divides both 24 and 18 without a remainder.
- The GCF of 24 and 18 is 6.
- Therefore, the GCF of [tex]\(24x + 18y\)[/tex] is 6.
3. Expression C: [tex]\(\frac{3x}{4} - \frac{7}{4}xy\)[/tex]
- To find the GCF of the terms [tex]\(\frac{3x}{4}\)[/tex] and [tex]\(-\frac{7}{4}xy\)[/tex], we first notice that both terms have a common factor in the denominator and share a factor in the numerator.
- The GCF of the numerators [tex]\(3x\)[/tex] and [tex]\(-7xy\)[/tex] is 3 (ignoring the variables for now).
- Both terms have a common denominator of 4.
- Therefore, the GCF of [tex]\(\frac{3x}{4} - \frac{7}{4}xy\)[/tex] is [tex]\(\frac{3}{4}\)[/tex] which simplifies to 0.75.
4. Expression D: [tex]\(\frac{14}{8}y + \frac{7}{4}y\)[/tex]
- Simplify the fraction [tex]\(\frac{14}{8}\)[/tex] to [tex]\(\frac{7}{4}\)[/tex].
- Thus, the expression becomes [tex]\(\frac{7}{4}y + \frac{7}{4}y\)[/tex].
- Since both terms are actually the same after simplification, the GCF is [tex]\(\frac{7}{4}\)[/tex].
- Therefore, the GCF of [tex]\(\frac{14}{8}y + \frac{7}{4}y\)[/tex] is [tex]\(\frac{7}{4}\)[/tex] which simplifies to 1.75.
### Final Result:
- Expression A: The GCF of [tex]\(15x - 6\)[/tex] is 3.
- Expression B: The GCF of [tex]\(24x + 18y\)[/tex] is 6.
- Expression C: The GCF of [tex]\(\frac{3x}{4} - \frac{7}{4}xy\)[/tex] is 0.75.
- Expression D: The GCF of [tex]\(\frac{14}{8}y + \frac{7}{4}y\)[/tex] is 1.75.
Thus, we have mapped each expression to its respective GCF:
- A. [tex]\(15x - 6\)[/tex] → 3
- B. [tex]\(24x + 18y\)[/tex] → 6
- C. [tex]\(\frac{3x}{4} - \frac{7}{4}xy\)[/tex] → 0.75
- D. [tex]\(\frac{14}{8}y + \frac{7}{4}y\)[/tex] → 1.75
### Step-by-Step Solution:
1. Expression A: [tex]\(15x - 6\)[/tex]
- To find the GCF of the terms [tex]\(15x\)[/tex] and [tex]\(-6\)[/tex], we need to identify the largest number that divides both 15 and [tex]\(-6\)[/tex] without a remainder.
- The GCF of 15 and [tex]\(-6\)[/tex] is 3.
- Therefore, the GCF of [tex]\(15x - 6\)[/tex] is 3.
2. Expression B: [tex]\(24x + 18y\)[/tex]
- To find the GCF of the terms [tex]\(24x\)[/tex] and [tex]\(18y\)[/tex], we need to identify the largest number that divides both 24 and 18 without a remainder.
- The GCF of 24 and 18 is 6.
- Therefore, the GCF of [tex]\(24x + 18y\)[/tex] is 6.
3. Expression C: [tex]\(\frac{3x}{4} - \frac{7}{4}xy\)[/tex]
- To find the GCF of the terms [tex]\(\frac{3x}{4}\)[/tex] and [tex]\(-\frac{7}{4}xy\)[/tex], we first notice that both terms have a common factor in the denominator and share a factor in the numerator.
- The GCF of the numerators [tex]\(3x\)[/tex] and [tex]\(-7xy\)[/tex] is 3 (ignoring the variables for now).
- Both terms have a common denominator of 4.
- Therefore, the GCF of [tex]\(\frac{3x}{4} - \frac{7}{4}xy\)[/tex] is [tex]\(\frac{3}{4}\)[/tex] which simplifies to 0.75.
4. Expression D: [tex]\(\frac{14}{8}y + \frac{7}{4}y\)[/tex]
- Simplify the fraction [tex]\(\frac{14}{8}\)[/tex] to [tex]\(\frac{7}{4}\)[/tex].
- Thus, the expression becomes [tex]\(\frac{7}{4}y + \frac{7}{4}y\)[/tex].
- Since both terms are actually the same after simplification, the GCF is [tex]\(\frac{7}{4}\)[/tex].
- Therefore, the GCF of [tex]\(\frac{14}{8}y + \frac{7}{4}y\)[/tex] is [tex]\(\frac{7}{4}\)[/tex] which simplifies to 1.75.
### Final Result:
- Expression A: The GCF of [tex]\(15x - 6\)[/tex] is 3.
- Expression B: The GCF of [tex]\(24x + 18y\)[/tex] is 6.
- Expression C: The GCF of [tex]\(\frac{3x}{4} - \frac{7}{4}xy\)[/tex] is 0.75.
- Expression D: The GCF of [tex]\(\frac{14}{8}y + \frac{7}{4}y\)[/tex] is 1.75.
Thus, we have mapped each expression to its respective GCF:
- A. [tex]\(15x - 6\)[/tex] → 3
- B. [tex]\(24x + 18y\)[/tex] → 6
- C. [tex]\(\frac{3x}{4} - \frac{7}{4}xy\)[/tex] → 0.75
- D. [tex]\(\frac{14}{8}y + \frac{7}{4}y\)[/tex] → 1.75
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.