Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's walk through the process of estimating [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] based on the provided data points [tex]\((x_i, y_i)\)[/tex]:
1. Fit a Polynomial to the Data:
The data suggests a nonlinear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Given the values provided, we use a quadratic polynomial (a second-degree polynomial) to model this relationship.
2. Determine the Polynomial Coefficients:
The quadratic polynomial can be expressed as:
[tex]\[ y = ax^2 + bx + c \][/tex]
Using the provided data points:
[tex]\[ \begin{align*} (2.5, 6.25) \\ (9.4, 88.36) \\ (15.6, 243.63) \\ (19.5, 380.25) \\ (25.8, 665.64) \end{align*} \][/tex]
the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] can be found through polynomial regression. These coefficients are approximately:
[tex]\[ a \approx 0.9990, \quad b \approx 0.0286, \quad c \approx -0.0888 \][/tex]
3. Form the Polynomial Equation:
Substituting the coefficients, the quadratic polynomial becomes:
[tex]\[ y \approx 0.9990x^2 + 0.0286x - 0.0888 \][/tex]
4. Calculate [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex]:
Plugging [tex]\( x = 4 \)[/tex] into the polynomial equation gives:
[tex]\[ \begin{align*} y & \approx 0.9990(4)^2 + 0.0286(4) - 0.0888 \\ y & \approx 0.9990 \cdot 16 + 0.0286 \cdot 4 - 0.0888 \\ y & \approx 15.984 + 0.1144 - 0.0888 \\ y & \approx 16.0098 \end{align*} \][/tex]
5. Select the Closest Approximate Value:
The calculated value [tex]\( y \approx 16.0098 \)[/tex] is closest to option B.
Therefore, the approximate value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] is:
[tex]\[ \boxed{16} \][/tex]
1. Fit a Polynomial to the Data:
The data suggests a nonlinear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Given the values provided, we use a quadratic polynomial (a second-degree polynomial) to model this relationship.
2. Determine the Polynomial Coefficients:
The quadratic polynomial can be expressed as:
[tex]\[ y = ax^2 + bx + c \][/tex]
Using the provided data points:
[tex]\[ \begin{align*} (2.5, 6.25) \\ (9.4, 88.36) \\ (15.6, 243.63) \\ (19.5, 380.25) \\ (25.8, 665.64) \end{align*} \][/tex]
the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] can be found through polynomial regression. These coefficients are approximately:
[tex]\[ a \approx 0.9990, \quad b \approx 0.0286, \quad c \approx -0.0888 \][/tex]
3. Form the Polynomial Equation:
Substituting the coefficients, the quadratic polynomial becomes:
[tex]\[ y \approx 0.9990x^2 + 0.0286x - 0.0888 \][/tex]
4. Calculate [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex]:
Plugging [tex]\( x = 4 \)[/tex] into the polynomial equation gives:
[tex]\[ \begin{align*} y & \approx 0.9990(4)^2 + 0.0286(4) - 0.0888 \\ y & \approx 0.9990 \cdot 16 + 0.0286 \cdot 4 - 0.0888 \\ y & \approx 15.984 + 0.1144 - 0.0888 \\ y & \approx 16.0098 \end{align*} \][/tex]
5. Select the Closest Approximate Value:
The calculated value [tex]\( y \approx 16.0098 \)[/tex] is closest to option B.
Therefore, the approximate value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] is:
[tex]\[ \boxed{16} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.