Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's walk through the process of estimating [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] based on the provided data points [tex]\((x_i, y_i)\)[/tex]:
1. Fit a Polynomial to the Data:
The data suggests a nonlinear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Given the values provided, we use a quadratic polynomial (a second-degree polynomial) to model this relationship.
2. Determine the Polynomial Coefficients:
The quadratic polynomial can be expressed as:
[tex]\[ y = ax^2 + bx + c \][/tex]
Using the provided data points:
[tex]\[ \begin{align*} (2.5, 6.25) \\ (9.4, 88.36) \\ (15.6, 243.63) \\ (19.5, 380.25) \\ (25.8, 665.64) \end{align*} \][/tex]
the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] can be found through polynomial regression. These coefficients are approximately:
[tex]\[ a \approx 0.9990, \quad b \approx 0.0286, \quad c \approx -0.0888 \][/tex]
3. Form the Polynomial Equation:
Substituting the coefficients, the quadratic polynomial becomes:
[tex]\[ y \approx 0.9990x^2 + 0.0286x - 0.0888 \][/tex]
4. Calculate [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex]:
Plugging [tex]\( x = 4 \)[/tex] into the polynomial equation gives:
[tex]\[ \begin{align*} y & \approx 0.9990(4)^2 + 0.0286(4) - 0.0888 \\ y & \approx 0.9990 \cdot 16 + 0.0286 \cdot 4 - 0.0888 \\ y & \approx 15.984 + 0.1144 - 0.0888 \\ y & \approx 16.0098 \end{align*} \][/tex]
5. Select the Closest Approximate Value:
The calculated value [tex]\( y \approx 16.0098 \)[/tex] is closest to option B.
Therefore, the approximate value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] is:
[tex]\[ \boxed{16} \][/tex]
1. Fit a Polynomial to the Data:
The data suggests a nonlinear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Given the values provided, we use a quadratic polynomial (a second-degree polynomial) to model this relationship.
2. Determine the Polynomial Coefficients:
The quadratic polynomial can be expressed as:
[tex]\[ y = ax^2 + bx + c \][/tex]
Using the provided data points:
[tex]\[ \begin{align*} (2.5, 6.25) \\ (9.4, 88.36) \\ (15.6, 243.63) \\ (19.5, 380.25) \\ (25.8, 665.64) \end{align*} \][/tex]
the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] can be found through polynomial regression. These coefficients are approximately:
[tex]\[ a \approx 0.9990, \quad b \approx 0.0286, \quad c \approx -0.0888 \][/tex]
3. Form the Polynomial Equation:
Substituting the coefficients, the quadratic polynomial becomes:
[tex]\[ y \approx 0.9990x^2 + 0.0286x - 0.0888 \][/tex]
4. Calculate [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex]:
Plugging [tex]\( x = 4 \)[/tex] into the polynomial equation gives:
[tex]\[ \begin{align*} y & \approx 0.9990(4)^2 + 0.0286(4) - 0.0888 \\ y & \approx 0.9990 \cdot 16 + 0.0286 \cdot 4 - 0.0888 \\ y & \approx 15.984 + 0.1144 - 0.0888 \\ y & \approx 16.0098 \end{align*} \][/tex]
5. Select the Closest Approximate Value:
The calculated value [tex]\( y \approx 16.0098 \)[/tex] is closest to option B.
Therefore, the approximate value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] is:
[tex]\[ \boxed{16} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.