Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's walk through the process of estimating [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] based on the provided data points [tex]\((x_i, y_i)\)[/tex]:
1. Fit a Polynomial to the Data:
The data suggests a nonlinear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Given the values provided, we use a quadratic polynomial (a second-degree polynomial) to model this relationship.
2. Determine the Polynomial Coefficients:
The quadratic polynomial can be expressed as:
[tex]\[ y = ax^2 + bx + c \][/tex]
Using the provided data points:
[tex]\[ \begin{align*} (2.5, 6.25) \\ (9.4, 88.36) \\ (15.6, 243.63) \\ (19.5, 380.25) \\ (25.8, 665.64) \end{align*} \][/tex]
the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] can be found through polynomial regression. These coefficients are approximately:
[tex]\[ a \approx 0.9990, \quad b \approx 0.0286, \quad c \approx -0.0888 \][/tex]
3. Form the Polynomial Equation:
Substituting the coefficients, the quadratic polynomial becomes:
[tex]\[ y \approx 0.9990x^2 + 0.0286x - 0.0888 \][/tex]
4. Calculate [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex]:
Plugging [tex]\( x = 4 \)[/tex] into the polynomial equation gives:
[tex]\[ \begin{align*} y & \approx 0.9990(4)^2 + 0.0286(4) - 0.0888 \\ y & \approx 0.9990 \cdot 16 + 0.0286 \cdot 4 - 0.0888 \\ y & \approx 15.984 + 0.1144 - 0.0888 \\ y & \approx 16.0098 \end{align*} \][/tex]
5. Select the Closest Approximate Value:
The calculated value [tex]\( y \approx 16.0098 \)[/tex] is closest to option B.
Therefore, the approximate value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] is:
[tex]\[ \boxed{16} \][/tex]
1. Fit a Polynomial to the Data:
The data suggests a nonlinear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Given the values provided, we use a quadratic polynomial (a second-degree polynomial) to model this relationship.
2. Determine the Polynomial Coefficients:
The quadratic polynomial can be expressed as:
[tex]\[ y = ax^2 + bx + c \][/tex]
Using the provided data points:
[tex]\[ \begin{align*} (2.5, 6.25) \\ (9.4, 88.36) \\ (15.6, 243.63) \\ (19.5, 380.25) \\ (25.8, 665.64) \end{align*} \][/tex]
the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] can be found through polynomial regression. These coefficients are approximately:
[tex]\[ a \approx 0.9990, \quad b \approx 0.0286, \quad c \approx -0.0888 \][/tex]
3. Form the Polynomial Equation:
Substituting the coefficients, the quadratic polynomial becomes:
[tex]\[ y \approx 0.9990x^2 + 0.0286x - 0.0888 \][/tex]
4. Calculate [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex]:
Plugging [tex]\( x = 4 \)[/tex] into the polynomial equation gives:
[tex]\[ \begin{align*} y & \approx 0.9990(4)^2 + 0.0286(4) - 0.0888 \\ y & \approx 0.9990 \cdot 16 + 0.0286 \cdot 4 - 0.0888 \\ y & \approx 15.984 + 0.1144 - 0.0888 \\ y & \approx 16.0098 \end{align*} \][/tex]
5. Select the Closest Approximate Value:
The calculated value [tex]\( y \approx 16.0098 \)[/tex] is closest to option B.
Therefore, the approximate value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] is:
[tex]\[ \boxed{16} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.