Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Consider the electron configuration:

[tex]\[
\begin{array}{cccc}
\text{ } & \uparrow\downarrow & \text{ } & \text{ } \\
\text{ } & \uparrow\downarrow & \text{ } & \text{ } \\
3s & \uparrow\downarrow & \uparrow\downarrow & \uparrow \\
3p & \text{ } & \text{ } & \text{ } \\
\end{array}
\][/tex]

Which element has this electron configuration?

A. astatine
B. bromine
C. chlorine
D. fluorine


Sagot :

To determine which element has the given electron configuration, let's analyze the configuration step by step.

Firstly, note that the electron configuration specifies the way electrons are distributed in an atom's orbitals.

Here, the configuration provided is:

- 1s: [tex]$\uparrow \downarrow$[/tex]
- 2s: [tex]$\uparrow \downarrow$[/tex]
- 2p: [tex]$\uparrow \downarrow$[/tex] [tex]$\uparrow \downarrow$[/tex] [tex]$\uparrow \downarrow$[/tex]
- 3s: [tex]$\uparrow \downarrow$[/tex]
- 3p: [tex]$\uparrow$[/tex] [tex]$\uparrow$[/tex] [tex]$\uparrow$[/tex]

Let's break down the given electron configuration:

1. 1s Orbital:
- [tex]$\uparrow \downarrow$[/tex] indicates 2 electrons in the 1s orbital.

2. 2s Orbital:
- [tex]$\uparrow \downarrow$[/tex] indicates 2 electrons in the 2s orbital.

3. 2p Orbitals:
- Three 2p orbitals, each holds up to 2 electrons:
- [tex]$\uparrow \downarrow$[/tex]
- [tex]$\uparrow \downarrow$[/tex]
- [tex]$\uparrow \downarrow$[/tex]
- Total electrons in 2p orbitals: 6 electrons.

4. 3s Orbital:
- [tex]$\uparrow \downarrow$[/tex] indicates 2 electrons in the 3s orbital.

5. 3p Orbitals:
- Three 3p orbitals, with:
- [tex]$\uparrow$[/tex]
- [tex]$\uparrow$[/tex]
- [tex]$\uparrow$[/tex]
- Total electrons in the 3p orbitals: 3 electrons.

Adding electrons from each orbital, we get:
- 1s: 2 electrons
- 2s: 2 electrons
- 2p: 6 electrons
- 3s: 2 electrons
- 3p: 3 electrons

Summing these up gives:
[tex]\[2 + 2 + 6 + 2 + 3 = 15\][/tex]

This configuration corresponds to an element with 17 electrons, which is the number of electrons in a neutral chlorine atom (atomic number 17).

Therefore, the element that has this electron configuration is Chlorine.

So, the correct answer is:
chlorine
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.