At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Which is equivalent to [tex]\sin^{-1}(0)[/tex]? Give your answer in radians.

A. 0

B. [tex]\frac{\pi}{2}[/tex]

C. [tex]\frac{3\pi}{2}[/tex]

D. [tex]\frac{5\pi}{2}[/tex]


Sagot :

To determine which value is equivalent to [tex]\(\sin^{-1}(0)\)[/tex], we need to understand what [tex]\(\sin^{-1}(x)\)[/tex] represents. The notation [tex]\(\sin^{-1}(x)\)[/tex] represents the inverse sine function, also known as arcsine, which returns the angle whose sine is [tex]\(x\)[/tex].

In this case, [tex]\(\sin^{-1}(0)\)[/tex] means we are asking for the angle [tex]\(\theta\)[/tex] such that [tex]\(\sin(\theta) = 0\)[/tex].

Let's consider the possible candidates:

1. [tex]\(0\)[/tex]: Check if [tex]\(\sin(0) = 0\)[/tex]:
[tex]\[ \sin(0) = 0 \][/tex]
This is true, so 0 is a candidate.

2. [tex]\(\frac{\pi}{2}\)[/tex]: Check if [tex]\(\sin\left(\frac{\pi}{2}\right) = 0\)[/tex]:
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
This is not true, so [tex]\(\frac{\pi}{2}\)[/tex] is not [tex]\(\sin^{-1}(0)\)[/tex].

3. [tex]\(\frac{3\pi}{2}\)[/tex]: Check if [tex]\(\sin\left(\frac{3\pi}{2}\right) = 0\)[/tex]:
[tex]\[ \sin\left(\frac{3\pi}{2}\right) = -1 \][/tex]
This is not true, so [tex]\(\frac{3\pi}{2}\)[/tex] is not [tex]\(\sin^{-1}(0)\)[/tex].

4. [tex]\(\frac{5\pi}{2}\)[/tex]: Check if [tex]\(\sin\left(\frac{5\pi}{2}\right) = 0\)[/tex]:
[tex]\[ \sin\left(\frac{5\pi}{2}\right) = 1 \][/tex]
This is not true, so [tex]\(\frac{5\pi}{2}\)[/tex] is not [tex]\(\sin^{-1}(0)\)[/tex].

Since the only angle that satisfies [tex]\(\sin(\theta) = 0\)[/tex] among the given choices is [tex]\(0\)[/tex], we conclude that:

[tex]\[ \sin^{-1}(0) = 0 \text{ radians} \][/tex]

Therefore, the answer is:
[tex]\[ \boxed{0} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.