Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the electron configuration for boron, we need to consider its atomic number, which is 5. This means that a neutral boron atom has 5 electrons. These electrons will fill the available atomic orbitals in the order of increasing energy levels, following the Aufbau principle.
1. The first two electrons will fill the 1s orbital:
- [tex]\(1s^2\)[/tex]
2. The next two electrons will fill the 2s orbital:
- [tex]\(2s^2\)[/tex]
3. The fifth electron will go into one of the 2p orbitals:
- [tex]\(2p^1\)[/tex]
Putting this together, the electron configuration will be:
[tex]\[ 1s^2 \, 2s^2 \, 2p^1 \][/tex]
Thus, the electron configuration for boron is:
[tex]\[ 1s^2 \, 2s^2 \, 2p^1 \][/tex]
So, the correct option is:
[tex]\[ 1s^2 \, 2s^2 \, 2p^1 \][/tex]
1. The first two electrons will fill the 1s orbital:
- [tex]\(1s^2\)[/tex]
2. The next two electrons will fill the 2s orbital:
- [tex]\(2s^2\)[/tex]
3. The fifth electron will go into one of the 2p orbitals:
- [tex]\(2p^1\)[/tex]
Putting this together, the electron configuration will be:
[tex]\[ 1s^2 \, 2s^2 \, 2p^1 \][/tex]
Thus, the electron configuration for boron is:
[tex]\[ 1s^2 \, 2s^2 \, 2p^1 \][/tex]
So, the correct option is:
[tex]\[ 1s^2 \, 2s^2 \, 2p^1 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.