Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem of finding the adjusted enthalpy for REACTION 3, we need to understand the process of reversing a chemical reaction and how it affects the enthalpy change, [tex]\(\Delta H\)[/tex].
Given:
[tex]\[ 3:\, 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH \, , \quad \Delta H = -278 \text{ kJ} \][/tex]
To find the adjusted enthalpy when the reaction is reversed, we follow these steps:
1. Identify the original reaction and its enthalpy change:
The original reaction is:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH \][/tex]
with an enthalpy change, [tex]\(\Delta H\)[/tex], of [tex]\(-278 \text{kJ}\)[/tex].
2. Reverse the reaction:
Reversing the reaction means we swap the products and reactants:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2 \][/tex]
3. Adjust the enthalpy change for the reversed reaction:
When a reaction is reversed, the sign of the enthalpy change is also reversed. Therefore, the [tex]\(\Delta H\)[/tex] for the reversed reaction will be the negative of the original enthalpy change.
The original [tex]\(\Delta H\)[/tex] is [tex]\(-278 \, \text{kJ}\)[/tex], so for the reversed reaction:
[tex]\[ \Delta H_{\text{reversed}} = -(-278 \, \text{kJ}) = +278 \, \text{kJ} \][/tex]
Thus, the adjusted enthalpy for the reversed REACTION 3 is:
[tex]\[ \boxed{+278 \, \text{kJ}} \][/tex]
Given:
[tex]\[ 3:\, 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH \, , \quad \Delta H = -278 \text{ kJ} \][/tex]
To find the adjusted enthalpy when the reaction is reversed, we follow these steps:
1. Identify the original reaction and its enthalpy change:
The original reaction is:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH \][/tex]
with an enthalpy change, [tex]\(\Delta H\)[/tex], of [tex]\(-278 \text{kJ}\)[/tex].
2. Reverse the reaction:
Reversing the reaction means we swap the products and reactants:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2 \][/tex]
3. Adjust the enthalpy change for the reversed reaction:
When a reaction is reversed, the sign of the enthalpy change is also reversed. Therefore, the [tex]\(\Delta H\)[/tex] for the reversed reaction will be the negative of the original enthalpy change.
The original [tex]\(\Delta H\)[/tex] is [tex]\(-278 \, \text{kJ}\)[/tex], so for the reversed reaction:
[tex]\[ \Delta H_{\text{reversed}} = -(-278 \, \text{kJ}) = +278 \, \text{kJ} \][/tex]
Thus, the adjusted enthalpy for the reversed REACTION 3 is:
[tex]\[ \boxed{+278 \, \text{kJ}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.