At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let’s go through the process of factoring the given polynomial step by step.
### Problem Statement
We need to factorize the polynomial:
[tex]\[ x^2 - 5x + 6 \][/tex]
And identify which of the given options is the correct factorization.
### Steps to Factorize the Polynomial
1. Identify the polynomial:
[tex]\[ x^2 - 5x + 6 \][/tex]
2. Find two numbers that multiply to the constant term (6) and add up to the coefficient of the linear term (-5).
Let's list pairs of factors for 6:
- [tex]\(1 \times 6 = 6\)[/tex]
- [tex]\(2 \times 3 = 6\)[/tex]
We need the pair that adds up to -5:
- [tex]\((1) + (-6) = -5\)[/tex]
- [tex]\((2) + (-3) = -1\)[/tex]
- [tex]\((-2) + (-3) = -5\)[/tex]
The pair that works is [tex]\((-2)\)[/tex] and [tex]\((-3)\)[/tex].
3. Write the polynomial as a product of two binomials:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
This matches with option B:
[tex]\[ (x - 2)(x - 3) \][/tex]
### Verification
To ensure our factorization is correct, we can expand the factors:
[tex]\[ (x - 2)(x - 3) \][/tex]
[tex]\[ = x(x - 3) - 2(x - 3) \][/tex]
[tex]\[ = x^2 - 3x - 2x + 6 \][/tex]
[tex]\[ = x^2 - 5x + 6 \][/tex]
The expanded form matches the original polynomial.
### Conclusion
The correct factorization of the polynomial [tex]\( x^2 - 5x + 6 \)[/tex] is:
[tex]\[ (x - 2)(x - 3) \][/tex]
Thus, the correct answer is:
[tex]\[ \text{B. } (x - 2)(x - 3) \][/tex]
### Problem Statement
We need to factorize the polynomial:
[tex]\[ x^2 - 5x + 6 \][/tex]
And identify which of the given options is the correct factorization.
### Steps to Factorize the Polynomial
1. Identify the polynomial:
[tex]\[ x^2 - 5x + 6 \][/tex]
2. Find two numbers that multiply to the constant term (6) and add up to the coefficient of the linear term (-5).
Let's list pairs of factors for 6:
- [tex]\(1 \times 6 = 6\)[/tex]
- [tex]\(2 \times 3 = 6\)[/tex]
We need the pair that adds up to -5:
- [tex]\((1) + (-6) = -5\)[/tex]
- [tex]\((2) + (-3) = -1\)[/tex]
- [tex]\((-2) + (-3) = -5\)[/tex]
The pair that works is [tex]\((-2)\)[/tex] and [tex]\((-3)\)[/tex].
3. Write the polynomial as a product of two binomials:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
This matches with option B:
[tex]\[ (x - 2)(x - 3) \][/tex]
### Verification
To ensure our factorization is correct, we can expand the factors:
[tex]\[ (x - 2)(x - 3) \][/tex]
[tex]\[ = x(x - 3) - 2(x - 3) \][/tex]
[tex]\[ = x^2 - 3x - 2x + 6 \][/tex]
[tex]\[ = x^2 - 5x + 6 \][/tex]
The expanded form matches the original polynomial.
### Conclusion
The correct factorization of the polynomial [tex]\( x^2 - 5x + 6 \)[/tex] is:
[tex]\[ (x - 2)(x - 3) \][/tex]
Thus, the correct answer is:
[tex]\[ \text{B. } (x - 2)(x - 3) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.