Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The table shows the heights of 40 students in a class.

\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Height [tex]$(h)$[/tex] \\
in [tex]$cm$[/tex]
\end{tabular} & Frequency \\
\hline [tex]$120\ \textless \ t\ \textless \ 124$[/tex] & 7 \\
\hline [tex]$124\ \textless \ t \leqslant 128$[/tex] & 8 \\
\hline [tex]$128\ \textless \ t\ \textless \ 132$[/tex] & 13 \\
\hline [tex]$132\ \textless \ t \leqslant 136$[/tex] & 9 \\
\hline [tex]$136\ \textless \ t \leqslant 140$[/tex] & 3 \\
\hline
\end{tabular}

a) Calculate an estimate for the mean height of the students.

Answer: \_\_\_\_\_ cm

b) Explain why your answer to part (a) is an estimate. \_\_\_\_\_


Sagot :

### Solution

First, we need to find an estimate for the mean height of the students given the height intervals and frequencies.

#### Step-by-Step:

1. Find the midpoints of each height interval:
- For [tex]\( 120 < t < 124 \)[/tex], the midpoint is [tex]\( \frac{120 + 124}{2} = 122 \)[/tex] cm
- For [tex]\( 124 < t \leqslant 128 \)[/tex], the midpoint is [tex]\( \frac{124 + 128}{2} = 126 \)[/tex] cm
- For [tex]\( 128 < t < 132 \)[/tex], the midpoint is [tex]\( \frac{128 + 132}{2} = 130 \)[/tex] cm
- For [tex]\( 132 < t \leqslant 136 \)[/tex], the midpoint is [tex]\( \frac{132 + 136}{2} = 134 \)[/tex] cm
- For [tex]\( 136 < t \leqslant 140 \)[/tex], the midpoint is [tex]\( \frac{136 + 140}{2} = 138 \)[/tex] cm

2. List the heights (midpoints) and their corresponding frequencies:
[tex]\[ \begin{array}{ccc} \text{Height Interval} & \text{Midpoint (cm)} & \text{Frequency (f)} \\ \hline 120 < t < 124 & 122 & 7 \\ 124 < t \leqslant 128 & 126 & 8 \\ 128 < t < 132 & 130 & 13 \\ 132 < t \leqslant 136 & 134 & 9 \\ 136 < t \leqslant 140 & 138 & 3 \\ \end{array} \][/tex]

3. Calculate the sum of the product of each midpoint and its frequency:
[tex]\[ \begin{aligned} & (122 \times 7) + (126 \times 8) + (130 \times 13) + (134 \times 9) + (138 \times 3) \\ & = 854 + 1008 + 1690 + 1206 + 414 \\ & = 5172 \, \text{cm} \end{aligned} \][/tex]

4. Calculate the total number of students:
[tex]\[ 7 + 8 + 13 + 9 + 3 = 40 \][/tex]

5. Calculate the mean height:
[tex]\[ \text{Mean height} = \frac{\text{Sum of (midpoints} \times \text{frequencies)}}{\text{Total number of students}} = \frac{5172}{40} = 129.3 \, \text{cm} \][/tex]

### Answer to part (a)
The estimated mean height of the students is [tex]\( 129.3 \)[/tex] cm.

### Answer to part (b)
The answer to part (a) is an estimate because the data provided is grouped into intervals. By using the midpoints of these intervals to represent the data, we approximate the actual heights of students within each range. This method doesn't account for the specific distribution of data within each interval, leading to an estimation rather than a precise calculation.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.