Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the zeros of the quadratic equation [tex]\( y = x^2 + 4x - 9 \)[/tex] by completing the square, follow these steps:
1. Rewrite the equation:
[tex]\[ x^2 + 4x - 9 = 0 \][/tex]
Move the constant term to the other side of the equation:
[tex]\[ x^2 + 4x = 9 \][/tex]
2. Complete the square:
To complete the square, add and subtract the same value inside the equation. We take half of the coefficient of [tex]\( x \)[/tex], square it, and add it to both sides of the equation.
The coefficient of [tex]\( x \)[/tex] is 4. Half of 4 is 2, and [tex]\( 2^2 = 4 \)[/tex]. Thus, we add 4 to both sides:
[tex]\[ x^2 + 4x + 4 = 9 + 4 \][/tex]
[tex]\[ (x + 2)^2 = 13 \][/tex]
3. Solve for [tex]\( x \)[/tex] by taking the square root of both sides:
[tex]\[ x + 2 = \pm \sqrt{13} \][/tex]
[tex]\[ x = -2 \pm \sqrt{13} \][/tex]
So, the zeros of the equation [tex]\( y = x^2 + 4x - 9 \)[/tex] are:
[tex]\[ x = -2 + \sqrt{13} \quad \text{and} \quad x = -2 - \sqrt{13} \][/tex]
Therefore, the correct answer is:
[tex]\[ D. \, x = -2 \pm \sqrt{13} \][/tex]
1. Rewrite the equation:
[tex]\[ x^2 + 4x - 9 = 0 \][/tex]
Move the constant term to the other side of the equation:
[tex]\[ x^2 + 4x = 9 \][/tex]
2. Complete the square:
To complete the square, add and subtract the same value inside the equation. We take half of the coefficient of [tex]\( x \)[/tex], square it, and add it to both sides of the equation.
The coefficient of [tex]\( x \)[/tex] is 4. Half of 4 is 2, and [tex]\( 2^2 = 4 \)[/tex]. Thus, we add 4 to both sides:
[tex]\[ x^2 + 4x + 4 = 9 + 4 \][/tex]
[tex]\[ (x + 2)^2 = 13 \][/tex]
3. Solve for [tex]\( x \)[/tex] by taking the square root of both sides:
[tex]\[ x + 2 = \pm \sqrt{13} \][/tex]
[tex]\[ x = -2 \pm \sqrt{13} \][/tex]
So, the zeros of the equation [tex]\( y = x^2 + 4x - 9 \)[/tex] are:
[tex]\[ x = -2 + \sqrt{13} \quad \text{and} \quad x = -2 - \sqrt{13} \][/tex]
Therefore, the correct answer is:
[tex]\[ D. \, x = -2 \pm \sqrt{13} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.