Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To answer these questions, we need to solve the given height equation [tex]\( h = -16t^2 + 68t + 9 \)[/tex] for specific conditions.
### Part 1: When will the height be 80 feet?
We need to find the time [tex]\( t \)[/tex] when the height [tex]\( h \)[/tex] is 80 feet:
[tex]\[ 80 = -16t^2 + 68t + 9 \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ -16t^2 + 68t + 9 - 80 = 0 \quad \Rightarrow \quad -16t^2 + 68t - 71 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = -71 \)[/tex]. To solve it, we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(-71) \][/tex]
Using the discriminant, we find the two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]
Substituting the values, we get:
[tex]\[ t_1 \approx 1.85 \quad \text{seconds} \][/tex]
[tex]\[ t_2 \approx 2.40 \quad \text{seconds} \][/tex]
So, the height of 80 feet is achieved at approximately 1.85 seconds and 2.40 seconds.
[tex]\[ \boxed{1.85 \, \text{seconds}} \][/tex]
[tex]\[ \boxed{2.40 \, \text{seconds}} \][/tex]
### Part 2: When will the object reach the ground?
To find when the object will reach the ground, we set [tex]\( h = 0 \)[/tex]:
[tex]\[ 0 = -16t^2 + 68t + 9 \][/tex]
This is also a quadratic equation. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = 9 \)[/tex]. We use the same quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(9) \][/tex]
Using the discriminant, find the two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]
Substituting these values, we get:
[tex]\[ t_1 \approx -0.13 \quad \text{seconds (not a valid physical solution)} \][/tex]
[tex]\[ t_2 \approx 4.38 \quad \text{seconds} \][/tex]
The valid solution is:
[tex]\[ \boxed{4.38 \, \text{seconds}} \][/tex]
### Part 1: When will the height be 80 feet?
We need to find the time [tex]\( t \)[/tex] when the height [tex]\( h \)[/tex] is 80 feet:
[tex]\[ 80 = -16t^2 + 68t + 9 \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ -16t^2 + 68t + 9 - 80 = 0 \quad \Rightarrow \quad -16t^2 + 68t - 71 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = -71 \)[/tex]. To solve it, we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(-71) \][/tex]
Using the discriminant, we find the two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]
Substituting the values, we get:
[tex]\[ t_1 \approx 1.85 \quad \text{seconds} \][/tex]
[tex]\[ t_2 \approx 2.40 \quad \text{seconds} \][/tex]
So, the height of 80 feet is achieved at approximately 1.85 seconds and 2.40 seconds.
[tex]\[ \boxed{1.85 \, \text{seconds}} \][/tex]
[tex]\[ \boxed{2.40 \, \text{seconds}} \][/tex]
### Part 2: When will the object reach the ground?
To find when the object will reach the ground, we set [tex]\( h = 0 \)[/tex]:
[tex]\[ 0 = -16t^2 + 68t + 9 \][/tex]
This is also a quadratic equation. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = 9 \)[/tex]. We use the same quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(9) \][/tex]
Using the discriminant, find the two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]
Substituting these values, we get:
[tex]\[ t_1 \approx -0.13 \quad \text{seconds (not a valid physical solution)} \][/tex]
[tex]\[ t_2 \approx 4.38 \quad \text{seconds} \][/tex]
The valid solution is:
[tex]\[ \boxed{4.38 \, \text{seconds}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.