Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To answer these questions, we need to solve the given height equation [tex]\( h = -16t^2 + 68t + 9 \)[/tex] for specific conditions.
### Part 1: When will the height be 80 feet?
We need to find the time [tex]\( t \)[/tex] when the height [tex]\( h \)[/tex] is 80 feet:
[tex]\[ 80 = -16t^2 + 68t + 9 \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ -16t^2 + 68t + 9 - 80 = 0 \quad \Rightarrow \quad -16t^2 + 68t - 71 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = -71 \)[/tex]. To solve it, we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(-71) \][/tex]
Using the discriminant, we find the two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]
Substituting the values, we get:
[tex]\[ t_1 \approx 1.85 \quad \text{seconds} \][/tex]
[tex]\[ t_2 \approx 2.40 \quad \text{seconds} \][/tex]
So, the height of 80 feet is achieved at approximately 1.85 seconds and 2.40 seconds.
[tex]\[ \boxed{1.85 \, \text{seconds}} \][/tex]
[tex]\[ \boxed{2.40 \, \text{seconds}} \][/tex]
### Part 2: When will the object reach the ground?
To find when the object will reach the ground, we set [tex]\( h = 0 \)[/tex]:
[tex]\[ 0 = -16t^2 + 68t + 9 \][/tex]
This is also a quadratic equation. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = 9 \)[/tex]. We use the same quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(9) \][/tex]
Using the discriminant, find the two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]
Substituting these values, we get:
[tex]\[ t_1 \approx -0.13 \quad \text{seconds (not a valid physical solution)} \][/tex]
[tex]\[ t_2 \approx 4.38 \quad \text{seconds} \][/tex]
The valid solution is:
[tex]\[ \boxed{4.38 \, \text{seconds}} \][/tex]
### Part 1: When will the height be 80 feet?
We need to find the time [tex]\( t \)[/tex] when the height [tex]\( h \)[/tex] is 80 feet:
[tex]\[ 80 = -16t^2 + 68t + 9 \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ -16t^2 + 68t + 9 - 80 = 0 \quad \Rightarrow \quad -16t^2 + 68t - 71 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = -71 \)[/tex]. To solve it, we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(-71) \][/tex]
Using the discriminant, we find the two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]
Substituting the values, we get:
[tex]\[ t_1 \approx 1.85 \quad \text{seconds} \][/tex]
[tex]\[ t_2 \approx 2.40 \quad \text{seconds} \][/tex]
So, the height of 80 feet is achieved at approximately 1.85 seconds and 2.40 seconds.
[tex]\[ \boxed{1.85 \, \text{seconds}} \][/tex]
[tex]\[ \boxed{2.40 \, \text{seconds}} \][/tex]
### Part 2: When will the object reach the ground?
To find when the object will reach the ground, we set [tex]\( h = 0 \)[/tex]:
[tex]\[ 0 = -16t^2 + 68t + 9 \][/tex]
This is also a quadratic equation. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = 9 \)[/tex]. We use the same quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(9) \][/tex]
Using the discriminant, find the two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]
Substituting these values, we get:
[tex]\[ t_1 \approx -0.13 \quad \text{seconds (not a valid physical solution)} \][/tex]
[tex]\[ t_2 \approx 4.38 \quad \text{seconds} \][/tex]
The valid solution is:
[tex]\[ \boxed{4.38 \, \text{seconds}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.