At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve the equation step by step:
Given equation:
[tex]\[ (w - 4)^2 = 2w^2 + w + 30 \][/tex]
1. First, expand the left-hand side of the equation:
[tex]\[ (w - 4)^2 = w^2 - 8w + 16 \][/tex]
So, our equation becomes:
[tex]\[ w^2 - 8w + 16 = 2w^2 + w + 30 \][/tex]
2. To set the equation to zero, move all the terms to one side. Subtract [tex]\(2w^2 + w + 30\)[/tex] from both sides:
[tex]\[ w^2 - 8w + 16 - 2w^2 - w - 30 = 0 \][/tex]
Combine like terms:
[tex]\[ w^2 - 2w^2 - 8w - w + 16 - 30 = 0 \][/tex]
[tex]\[ -w^2 - 9w - 14 = 0 \][/tex]
3. Multiply the entire equation by -1 to make the leading coefficient positive:
[tex]\[ w^2 + 9w + 14 = 0 \][/tex]
Now, we have a standard quadratic equation:
[tex]\[ w^2 + 9w + 14 = 0 \][/tex]
4. Solve the quadratic equation using the quadratic formula [tex]\((w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a})\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 9\)[/tex], and [tex]\(c = 14\)[/tex].
First, calculate the discriminant:
[tex]\[ b^2 - 4ac = 9^2 - 4 \cdot 1 \cdot 14 = 81 - 56 = 25 \][/tex]
5. Now, apply the quadratic formula:
[tex]\[ w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-9 \pm \sqrt{25}}{2 \cdot 1} \][/tex]
[tex]\[ w = \frac{-9 \pm 5}{2} \][/tex]
This gives us two solutions:
[tex]\[ w = \frac{-9 + 5}{2} = \frac{-4}{2} = -2 \][/tex]
[tex]\[ w = \frac{-9 - 5}{2} = \frac{-14}{2} = -7 \][/tex]
Therefore, the solutions are:
[tex]\[ w = -2 \quad \text{and} \quad w = -7 \][/tex]
Given equation:
[tex]\[ (w - 4)^2 = 2w^2 + w + 30 \][/tex]
1. First, expand the left-hand side of the equation:
[tex]\[ (w - 4)^2 = w^2 - 8w + 16 \][/tex]
So, our equation becomes:
[tex]\[ w^2 - 8w + 16 = 2w^2 + w + 30 \][/tex]
2. To set the equation to zero, move all the terms to one side. Subtract [tex]\(2w^2 + w + 30\)[/tex] from both sides:
[tex]\[ w^2 - 8w + 16 - 2w^2 - w - 30 = 0 \][/tex]
Combine like terms:
[tex]\[ w^2 - 2w^2 - 8w - w + 16 - 30 = 0 \][/tex]
[tex]\[ -w^2 - 9w - 14 = 0 \][/tex]
3. Multiply the entire equation by -1 to make the leading coefficient positive:
[tex]\[ w^2 + 9w + 14 = 0 \][/tex]
Now, we have a standard quadratic equation:
[tex]\[ w^2 + 9w + 14 = 0 \][/tex]
4. Solve the quadratic equation using the quadratic formula [tex]\((w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a})\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 9\)[/tex], and [tex]\(c = 14\)[/tex].
First, calculate the discriminant:
[tex]\[ b^2 - 4ac = 9^2 - 4 \cdot 1 \cdot 14 = 81 - 56 = 25 \][/tex]
5. Now, apply the quadratic formula:
[tex]\[ w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-9 \pm \sqrt{25}}{2 \cdot 1} \][/tex]
[tex]\[ w = \frac{-9 \pm 5}{2} \][/tex]
This gives us two solutions:
[tex]\[ w = \frac{-9 + 5}{2} = \frac{-4}{2} = -2 \][/tex]
[tex]\[ w = \frac{-9 - 5}{2} = \frac{-14}{2} = -7 \][/tex]
Therefore, the solutions are:
[tex]\[ w = -2 \quad \text{and} \quad w = -7 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.