Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation [tex]\(\log_2(2x) + \log_2(x - 3) = \log_2 8\)[/tex], follow these steps:
1. Use the properties of logarithms: The sum of logarithms can be expressed as the logarithm of a product. We have:
[tex]\[ \log_2(2x) + \log_2(x - 3) = \log_2\left((2x)(x - 3)\right) \][/tex]
So, the equation becomes:
[tex]\[ \log_2\left(2x(x - 3)\right) = \log_2 8 \][/tex]
2. Combine the expressions inside the logarithms:
[tex]\[ \log_2\left(2x^2 - 6x\right) = \log_2 8 \][/tex]
3. Logarithmic equality: If [tex]\(\log_b A = \log_b B\)[/tex], then [tex]\(A = B\)[/tex]. Therefore:
[tex]\[ 2x^2 - 6x = 8 \][/tex]
4. Solve the quadratic equation: First, bring all terms to one side of the equation to set it to zero:
[tex]\[ 2x^2 - 6x - 8 = 0 \][/tex]
5. Factor the quadratic equation: We can solve this by factoring, using the quadratic formula, or other methods. We'll factor it first:
[tex]\[ 2(x^2 - 3x - 4) = 0 \][/tex]
[tex]\[ 2(x - 4)(x + 1) = 0 \][/tex]
6. Set each factor to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x - 4 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
[tex]\[ x = 4 \quad \text{or} \quad x = -1 \][/tex]
7. Check for extraneous solutions: Verify that each solution satisfies the original equation. Logarithms are only defined for positive arguments. Check [tex]\(x = 4\)[/tex] and [tex]\(x = -1\)[/tex]:
- For [tex]\(x = 4\)[/tex]:
[tex]\[ \log_2(2(4)) + \log_2(4 - 3) = \log_2(8) \][/tex]
[tex]\[ \log_2(8) + \log_2(1) = \log_2(8) \][/tex]
[tex]\[ 3 + 0 = 3 \quad \text{which is true.} \][/tex]
- For [tex]\(x = -1\)[/tex]:
[tex]\[ \log_2(2(-1)) + \log_2(-1 - 3) \quad \text{is not defined, since we're taking the log of negative numbers.} \][/tex]
8. Conclusion: The only valid solution in the domain of the original equation is:
[tex]\[ x = 4 \][/tex]
So, the solution to the equation [tex]\(\log_2(2x) + \log_2(x - 3) = \log_2 8\)[/tex] is [tex]\( \boxed{4} \)[/tex].
1. Use the properties of logarithms: The sum of logarithms can be expressed as the logarithm of a product. We have:
[tex]\[ \log_2(2x) + \log_2(x - 3) = \log_2\left((2x)(x - 3)\right) \][/tex]
So, the equation becomes:
[tex]\[ \log_2\left(2x(x - 3)\right) = \log_2 8 \][/tex]
2. Combine the expressions inside the logarithms:
[tex]\[ \log_2\left(2x^2 - 6x\right) = \log_2 8 \][/tex]
3. Logarithmic equality: If [tex]\(\log_b A = \log_b B\)[/tex], then [tex]\(A = B\)[/tex]. Therefore:
[tex]\[ 2x^2 - 6x = 8 \][/tex]
4. Solve the quadratic equation: First, bring all terms to one side of the equation to set it to zero:
[tex]\[ 2x^2 - 6x - 8 = 0 \][/tex]
5. Factor the quadratic equation: We can solve this by factoring, using the quadratic formula, or other methods. We'll factor it first:
[tex]\[ 2(x^2 - 3x - 4) = 0 \][/tex]
[tex]\[ 2(x - 4)(x + 1) = 0 \][/tex]
6. Set each factor to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ x - 4 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
[tex]\[ x = 4 \quad \text{or} \quad x = -1 \][/tex]
7. Check for extraneous solutions: Verify that each solution satisfies the original equation. Logarithms are only defined for positive arguments. Check [tex]\(x = 4\)[/tex] and [tex]\(x = -1\)[/tex]:
- For [tex]\(x = 4\)[/tex]:
[tex]\[ \log_2(2(4)) + \log_2(4 - 3) = \log_2(8) \][/tex]
[tex]\[ \log_2(8) + \log_2(1) = \log_2(8) \][/tex]
[tex]\[ 3 + 0 = 3 \quad \text{which is true.} \][/tex]
- For [tex]\(x = -1\)[/tex]:
[tex]\[ \log_2(2(-1)) + \log_2(-1 - 3) \quad \text{is not defined, since we're taking the log of negative numbers.} \][/tex]
8. Conclusion: The only valid solution in the domain of the original equation is:
[tex]\[ x = 4 \][/tex]
So, the solution to the equation [tex]\(\log_2(2x) + \log_2(x - 3) = \log_2 8\)[/tex] is [tex]\( \boxed{4} \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.