Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's go through a detailed, step-by-step solution:
We have two lines given by the equations:
[tex]\[ \begin{array}{l} 3x + 12y = 9 \\ 2x - 8y = 4 \end{array} \][/tex]
First, let's convert these equations into slope-intercept form, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope of the line.
1. For the first line [tex]\(3x + 12y = 9\)[/tex]:
[tex]\[ \begin{aligned} 3x + 12y &= 9 \\ 12y &= -3x + 9 \\ y &= \frac{-3}{12}x + \frac{9}{12} \\ y &= -\frac{1}{4}x + \frac{3}{4} \end{aligned} \][/tex]
The slope [tex]\(m_1\)[/tex] of the first line is [tex]\(-\frac{1}{4}\)[/tex].
2. For the second line [tex]\(2x - 8y = 4\)[/tex]:
[tex]\[ \begin{aligned} 2x - 8y &= 4 \\ -8y &= -2x + 4 \\ y &= \frac{2}{8}x - \frac{4}{8} \\ y &= \frac{1}{4}x - \frac{1}{2} \end{aligned} \][/tex]
The slope [tex]\(m_2\)[/tex] of the second line is [tex]\(\frac{1}{4}\)[/tex].
Now, let's analyze the relationship between the two slopes [tex]\(m_1 = -\frac{1}{4}\)[/tex] and [tex]\(m_2 = \frac{1}{4}\)[/tex]:
- The two slopes are [tex]\(-\frac{1}{4}\)[/tex] and [tex]\(\frac{1}{4}\)[/tex].
Checking whether the lines are parallel, perpendicular, or neither involves:
1. Parallel Lines: Two lines are parallel if their slopes are equal, i.e., [tex]\(m_1 = m_2\)[/tex].
[tex]\[ -\frac{1}{4} \ne \frac{1}{4} \][/tex]
Hence, the lines are not parallel.
2. Perpendicular Lines: Two lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex], i.e., [tex]\(m_1 \cdot m_2 = -1\)[/tex].
[tex]\[ -\frac{1}{4} \times \frac{1}{4} = -\frac{1}{16} \ne -1 \][/tex]
Hence, the lines are not perpendicular.
3. Neither Parallel nor Perpendicular: If the slopes are not equal and their product is not [tex]\(-1\)[/tex], then the lines are neither parallel nor perpendicular.
Since [tex]\(-\frac{1}{4} \neq \frac{1}{4}\)[/tex] and their product [tex]\(-\frac{1}{16} \ne -1\)[/tex], the lines are neither parallel nor perpendicular.
The correct answer is:
- The slopes of the lines are opposites, so they are neither parallel nor perpendicular.
Thus, the solution to the problem is:
[tex]\[ \boxed{3} \][/tex]
We have two lines given by the equations:
[tex]\[ \begin{array}{l} 3x + 12y = 9 \\ 2x - 8y = 4 \end{array} \][/tex]
First, let's convert these equations into slope-intercept form, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope of the line.
1. For the first line [tex]\(3x + 12y = 9\)[/tex]:
[tex]\[ \begin{aligned} 3x + 12y &= 9 \\ 12y &= -3x + 9 \\ y &= \frac{-3}{12}x + \frac{9}{12} \\ y &= -\frac{1}{4}x + \frac{3}{4} \end{aligned} \][/tex]
The slope [tex]\(m_1\)[/tex] of the first line is [tex]\(-\frac{1}{4}\)[/tex].
2. For the second line [tex]\(2x - 8y = 4\)[/tex]:
[tex]\[ \begin{aligned} 2x - 8y &= 4 \\ -8y &= -2x + 4 \\ y &= \frac{2}{8}x - \frac{4}{8} \\ y &= \frac{1}{4}x - \frac{1}{2} \end{aligned} \][/tex]
The slope [tex]\(m_2\)[/tex] of the second line is [tex]\(\frac{1}{4}\)[/tex].
Now, let's analyze the relationship between the two slopes [tex]\(m_1 = -\frac{1}{4}\)[/tex] and [tex]\(m_2 = \frac{1}{4}\)[/tex]:
- The two slopes are [tex]\(-\frac{1}{4}\)[/tex] and [tex]\(\frac{1}{4}\)[/tex].
Checking whether the lines are parallel, perpendicular, or neither involves:
1. Parallel Lines: Two lines are parallel if their slopes are equal, i.e., [tex]\(m_1 = m_2\)[/tex].
[tex]\[ -\frac{1}{4} \ne \frac{1}{4} \][/tex]
Hence, the lines are not parallel.
2. Perpendicular Lines: Two lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex], i.e., [tex]\(m_1 \cdot m_2 = -1\)[/tex].
[tex]\[ -\frac{1}{4} \times \frac{1}{4} = -\frac{1}{16} \ne -1 \][/tex]
Hence, the lines are not perpendicular.
3. Neither Parallel nor Perpendicular: If the slopes are not equal and their product is not [tex]\(-1\)[/tex], then the lines are neither parallel nor perpendicular.
Since [tex]\(-\frac{1}{4} \neq \frac{1}{4}\)[/tex] and their product [tex]\(-\frac{1}{16} \ne -1\)[/tex], the lines are neither parallel nor perpendicular.
The correct answer is:
- The slopes of the lines are opposites, so they are neither parallel nor perpendicular.
Thus, the solution to the problem is:
[tex]\[ \boxed{3} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.