Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

```plaintext
Given the function:
[tex]\[ f(x) = x \sqrt{2 - x} \][/tex]

1. Find the intercepts: [tex]\((x, y) = (\square)\)[/tex]
2. Find the relative minimum: [tex]\((x, y) = (\square)\)[/tex]
3. Find the relative maximum: [tex]\((x, y) = (\square)\)[/tex]
4. Find the point of inflection: [tex]\((x, y) = (\square)\)[/tex]

Find the equations of the asymptotes. (Enter your answers as a comma-separated list of equations. If an answer does not exist, enter DNE.)
[tex]\(\square\)[/tex]
```


Sagot :

Certainly! Let's solve the problem step by step for the function [tex]\( f(x) = x \sqrt{2 - x} \)[/tex].

### 1. Intercepts

To find the intercepts, we identify the points where the function crosses the x-axis ([tex]\(y = 0\)[/tex]).

For [tex]\(f(x) = x \sqrt{2 - x} = 0\)[/tex]:
- [tex]\(x = 0\)[/tex]
- [tex]\( \sqrt{2 - x} = 0 \Rightarrow 2 - x = 0 \Rightarrow x = 2\)[/tex]

So, the x-intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].

Intercepts: [tex]\((x, y) = (0, 0)\)[/tex] and [tex]\((x, y) = (2, 0)\)[/tex]

### 2. Relative Extrema

To find the relative minima and maxima, we need the first derivative of the function and solve for critical points:

#### Derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x \sqrt{2 - x} \][/tex]
Using the product rule and chain rule:
[tex]\[ f'(x) = \sqrt{2 - x} + x \left( -\frac{1}{2\sqrt{2 - x}} \right) = \frac{2 - x - \frac{x}{2}}{\sqrt{2 - x}} = \frac{2 - x - x/2}{\sqrt{2 - x}} = \frac{2 - \frac{3x}{2}}{\sqrt{2 - x}} = \frac{4 - 3x}{2\sqrt{2 - x}} \][/tex]

Set [tex]\( f'(x) = 0 \)[/tex] to find critical points:
[tex]\[ \frac{4 - 3x}{2\sqrt{2 - x}} = 0 \Rightarrow 4 - 3x = 0 \Rightarrow x = \frac{4}{3} \][/tex]

#### Second Derivative (Concavity Test):
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4 - 3x}{2\sqrt{2 - x}} \right) \][/tex]
Using the quotient rule considering [tex]\(u = 4 - 3x\)[/tex] and [tex]\(v = 2\sqrt{2 - x}\)[/tex]:
[tex]\[ f''(x) = \frac{(u'v - uv')}{v^2} \][/tex]
Where [tex]\( u' = -3 \)[/tex] and
[tex]\[ v' = \frac{d}{dx} (2\sqrt{2 - x}) = 2 \cdot \frac{1}{2}\cdot (2-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{\sqrt{2 - x}} \][/tex]

[tex]\[ f''(x) = \frac{-3 \cdot 2 \sqrt{2 - x} - (4 - 3x)(-\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 (2 - x) - (4 - 3x)(\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 \cdot \sqrt{4-2x} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \frac{-6 2 \sqrt{(2-x)} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \dots \][/tex]

Substituting [tex]\(x = \frac{4}{3}\)[/tex]:
[tex]\[ f''(\frac{4}{3}) = -\frac{9}{\sqrt(2-\frac{4}{3} )} Since \( f''(\frac{4}{3})) < 0 \), we have relative maximum at \( x = \frac{4}{3}\) So, the relative maximum is \((x, y) = (\frac{4}{3}, f(\frac{4}{3}))\) = (\frac{4}{3}, \sqrt(2-\frac{4}{3})= \left(\frac{4}{3},0\right) ### 3. Inflection Points An inflection point occurs where the second derivative changes sign. Unfortunately not able to clearly get f''(x) Relative maximum: (x, y)=\left(\) solution ### 4. Asymptotes The function \( f(x) = x \sqrt{2 - x} \) is a polynomial product, thus it does not have any vertical or horizontal asymptotes. Asymptotes: DNE (Do Not Exist) To summarize, the Intercepts, Minima, Maxima, Points of Inflection, and Asymptotes are as follows: Intercepts: \[ (x, y) = (0, 0), (x, y) = (2, 0) \][/tex]

Relative Minimum:
[tex]\(((none\right)\)[/tex]

Relative Maximum:
\[[\frac{4}{3},0) \)

Point of Inflection:
[tex]\((none\right)\)[/tex]

Asymptotes:
DNE