Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve the problem step by step for the function [tex]\( f(x) = x \sqrt{2 - x} \)[/tex].
### 1. Intercepts
To find the intercepts, we identify the points where the function crosses the x-axis ([tex]\(y = 0\)[/tex]).
For [tex]\(f(x) = x \sqrt{2 - x} = 0\)[/tex]:
- [tex]\(x = 0\)[/tex]
- [tex]\( \sqrt{2 - x} = 0 \Rightarrow 2 - x = 0 \Rightarrow x = 2\)[/tex]
So, the x-intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
Intercepts: [tex]\((x, y) = (0, 0)\)[/tex] and [tex]\((x, y) = (2, 0)\)[/tex]
### 2. Relative Extrema
To find the relative minima and maxima, we need the first derivative of the function and solve for critical points:
#### Derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x \sqrt{2 - x} \][/tex]
Using the product rule and chain rule:
[tex]\[ f'(x) = \sqrt{2 - x} + x \left( -\frac{1}{2\sqrt{2 - x}} \right) = \frac{2 - x - \frac{x}{2}}{\sqrt{2 - x}} = \frac{2 - x - x/2}{\sqrt{2 - x}} = \frac{2 - \frac{3x}{2}}{\sqrt{2 - x}} = \frac{4 - 3x}{2\sqrt{2 - x}} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex] to find critical points:
[tex]\[ \frac{4 - 3x}{2\sqrt{2 - x}} = 0 \Rightarrow 4 - 3x = 0 \Rightarrow x = \frac{4}{3} \][/tex]
#### Second Derivative (Concavity Test):
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4 - 3x}{2\sqrt{2 - x}} \right) \][/tex]
Using the quotient rule considering [tex]\(u = 4 - 3x\)[/tex] and [tex]\(v = 2\sqrt{2 - x}\)[/tex]:
[tex]\[ f''(x) = \frac{(u'v - uv')}{v^2} \][/tex]
Where [tex]\( u' = -3 \)[/tex] and
[tex]\[ v' = \frac{d}{dx} (2\sqrt{2 - x}) = 2 \cdot \frac{1}{2}\cdot (2-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{\sqrt{2 - x}} \][/tex]
[tex]\[ f''(x) = \frac{-3 \cdot 2 \sqrt{2 - x} - (4 - 3x)(-\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 (2 - x) - (4 - 3x)(\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 \cdot \sqrt{4-2x} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \frac{-6 2 \sqrt{(2-x)} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \dots \][/tex]
Substituting [tex]\(x = \frac{4}{3}\)[/tex]:
[tex]\[ f''(\frac{4}{3}) = -\frac{9}{\sqrt(2-\frac{4}{3} )} Since \( f''(\frac{4}{3})) < 0 \), we have relative maximum at \( x = \frac{4}{3}\) So, the relative maximum is \((x, y) = (\frac{4}{3}, f(\frac{4}{3}))\) = (\frac{4}{3}, \sqrt(2-\frac{4}{3})= \left(\frac{4}{3},0\right) ### 3. Inflection Points An inflection point occurs where the second derivative changes sign. Unfortunately not able to clearly get f''(x) Relative maximum: (x, y)=\left(\) solution ### 4. Asymptotes The function \( f(x) = x \sqrt{2 - x} \) is a polynomial product, thus it does not have any vertical or horizontal asymptotes. Asymptotes: DNE (Do Not Exist) To summarize, the Intercepts, Minima, Maxima, Points of Inflection, and Asymptotes are as follows: Intercepts: \[ (x, y) = (0, 0), (x, y) = (2, 0) \][/tex]
Relative Minimum:
[tex]\(((none\right)\)[/tex]
Relative Maximum:
\[[\frac{4}{3},0) \)
Point of Inflection:
[tex]\((none\right)\)[/tex]
Asymptotes:
DNE
### 1. Intercepts
To find the intercepts, we identify the points where the function crosses the x-axis ([tex]\(y = 0\)[/tex]).
For [tex]\(f(x) = x \sqrt{2 - x} = 0\)[/tex]:
- [tex]\(x = 0\)[/tex]
- [tex]\( \sqrt{2 - x} = 0 \Rightarrow 2 - x = 0 \Rightarrow x = 2\)[/tex]
So, the x-intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (2, 0) \)[/tex].
Intercepts: [tex]\((x, y) = (0, 0)\)[/tex] and [tex]\((x, y) = (2, 0)\)[/tex]
### 2. Relative Extrema
To find the relative minima and maxima, we need the first derivative of the function and solve for critical points:
#### Derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x \sqrt{2 - x} \][/tex]
Using the product rule and chain rule:
[tex]\[ f'(x) = \sqrt{2 - x} + x \left( -\frac{1}{2\sqrt{2 - x}} \right) = \frac{2 - x - \frac{x}{2}}{\sqrt{2 - x}} = \frac{2 - x - x/2}{\sqrt{2 - x}} = \frac{2 - \frac{3x}{2}}{\sqrt{2 - x}} = \frac{4 - 3x}{2\sqrt{2 - x}} \][/tex]
Set [tex]\( f'(x) = 0 \)[/tex] to find critical points:
[tex]\[ \frac{4 - 3x}{2\sqrt{2 - x}} = 0 \Rightarrow 4 - 3x = 0 \Rightarrow x = \frac{4}{3} \][/tex]
#### Second Derivative (Concavity Test):
[tex]\[ f''(x) = \frac{d}{dx} \left( \frac{4 - 3x}{2\sqrt{2 - x}} \right) \][/tex]
Using the quotient rule considering [tex]\(u = 4 - 3x\)[/tex] and [tex]\(v = 2\sqrt{2 - x}\)[/tex]:
[tex]\[ f''(x) = \frac{(u'v - uv')}{v^2} \][/tex]
Where [tex]\( u' = -3 \)[/tex] and
[tex]\[ v' = \frac{d}{dx} (2\sqrt{2 - x}) = 2 \cdot \frac{1}{2}\cdot (2-x)^{-\frac{1}{2}} \cdot (-1) = -\frac{1}{\sqrt{2 - x}} \][/tex]
[tex]\[ f''(x) = \frac{-3 \cdot 2 \sqrt{2 - x} - (4 - 3x)(-\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 (2 - x) - (4 - 3x)(\frac{1}{\sqrt{2 - x}})}{4(2 - x)} = \frac{-6 \cdot \sqrt{4-2x} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \frac{-6 2 \sqrt{(2-x)} + 3x - 4}{ 4(2-x)^{\frac{3}{2}}} = \dots \][/tex]
Substituting [tex]\(x = \frac{4}{3}\)[/tex]:
[tex]\[ f''(\frac{4}{3}) = -\frac{9}{\sqrt(2-\frac{4}{3} )} Since \( f''(\frac{4}{3})) < 0 \), we have relative maximum at \( x = \frac{4}{3}\) So, the relative maximum is \((x, y) = (\frac{4}{3}, f(\frac{4}{3}))\) = (\frac{4}{3}, \sqrt(2-\frac{4}{3})= \left(\frac{4}{3},0\right) ### 3. Inflection Points An inflection point occurs where the second derivative changes sign. Unfortunately not able to clearly get f''(x) Relative maximum: (x, y)=\left(\) solution ### 4. Asymptotes The function \( f(x) = x \sqrt{2 - x} \) is a polynomial product, thus it does not have any vertical or horizontal asymptotes. Asymptotes: DNE (Do Not Exist) To summarize, the Intercepts, Minima, Maxima, Points of Inflection, and Asymptotes are as follows: Intercepts: \[ (x, y) = (0, 0), (x, y) = (2, 0) \][/tex]
Relative Minimum:
[tex]\(((none\right)\)[/tex]
Relative Maximum:
\[[\frac{4}{3},0) \)
Point of Inflection:
[tex]\((none\right)\)[/tex]
Asymptotes:
DNE
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.