At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To answer this question, we need to compare the two linear equations and understand their characteristics, specifically focusing on the slope, since the slope determines the steepness of the line.
The first equation given is:
[tex]\[ y = 5x - 2 \][/tex]
Here, the slope (m1) is 5.
The second equation given is:
[tex]\[ y = \frac{3}{4}x - 2 \][/tex]
Here, the slope (m2) is [tex]\(\frac{3}{4}\)[/tex].
Comparing the slopes of both lines:
- The slope of the first line (5) is greater than the slope of the second line ([tex]\(\frac{3}{4}\)[/tex]).
When comparing two slopes:
- A greater slope indicates a steeper line.
- A smaller slope indicates a less steep line.
Since 5 is greater than [tex]\(\frac{3}{4}\)[/tex], the line with the slope of [tex]\(\frac{3}{4}\)[/tex] is less steep than the line with the slope of 5.
Therefore, the graph of the new function [tex]\( y = \frac{3}{4}x - 2 \)[/tex] would be less steep compared to the graph of the original function [tex]\( y = 5x - 2 \)[/tex].
Thus, the correct answer is:
B. It would be less steep.
The first equation given is:
[tex]\[ y = 5x - 2 \][/tex]
Here, the slope (m1) is 5.
The second equation given is:
[tex]\[ y = \frac{3}{4}x - 2 \][/tex]
Here, the slope (m2) is [tex]\(\frac{3}{4}\)[/tex].
Comparing the slopes of both lines:
- The slope of the first line (5) is greater than the slope of the second line ([tex]\(\frac{3}{4}\)[/tex]).
When comparing two slopes:
- A greater slope indicates a steeper line.
- A smaller slope indicates a less steep line.
Since 5 is greater than [tex]\(\frac{3}{4}\)[/tex], the line with the slope of [tex]\(\frac{3}{4}\)[/tex] is less steep than the line with the slope of 5.
Therefore, the graph of the new function [tex]\( y = \frac{3}{4}x - 2 \)[/tex] would be less steep compared to the graph of the original function [tex]\( y = 5x - 2 \)[/tex].
Thus, the correct answer is:
B. It would be less steep.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.