Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem, let's determine the rate of change and the peak elevation step-by-step.
1. Identify the given data points:
We are given two points:
[tex]\[ (x_1, y_1) = (2, 1400) \quad \text{and} \quad (x_2, y_2) = (4, 1000) \][/tex]
2. Calculate the rate of change (slope):
The rate of change (slope) [tex]\( m \)[/tex] can be computed using the formula for the slope of a line between two points:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values:
[tex]\[ m = \frac{1000 - 1400}{4 - 2} = \frac{-400}{2} = -200 \text{ feet per hour} \][/tex]
3. Determine the linear equation:
The general form of the linear equation for this situation is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope, and [tex]\( b \)[/tex] is the y-intercept (elevation at the peak when hours hiked is zero).
4. Find the y-intercept [tex]\( b \)[/tex]:
We will use one of the provided points and the slope to calculate [tex]\( b \)[/tex]. Using the point [tex]\( (2, 1400) \)[/tex], we substitute into the linear equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ 1400 = (-200)(2) + b \][/tex]
[tex]\[ 1400 = -400 + b \][/tex]
[tex]\[ b = 1400 + 400 = 1800 \][/tex]
5. Conclusion:
The rate of change is [tex]\( -200 \)[/tex] feet per hour, and the peak is at an elevation of [tex]\( 1800 \)[/tex] feet.
Hence, in a function for this situation, the rate of change is [tex]\(-200\)[/tex] feet per hour and the peak is at an elevation of [tex]\( 1800 \)[/tex] feet.
1. Identify the given data points:
We are given two points:
[tex]\[ (x_1, y_1) = (2, 1400) \quad \text{and} \quad (x_2, y_2) = (4, 1000) \][/tex]
2. Calculate the rate of change (slope):
The rate of change (slope) [tex]\( m \)[/tex] can be computed using the formula for the slope of a line between two points:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values:
[tex]\[ m = \frac{1000 - 1400}{4 - 2} = \frac{-400}{2} = -200 \text{ feet per hour} \][/tex]
3. Determine the linear equation:
The general form of the linear equation for this situation is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope, and [tex]\( b \)[/tex] is the y-intercept (elevation at the peak when hours hiked is zero).
4. Find the y-intercept [tex]\( b \)[/tex]:
We will use one of the provided points and the slope to calculate [tex]\( b \)[/tex]. Using the point [tex]\( (2, 1400) \)[/tex], we substitute into the linear equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ 1400 = (-200)(2) + b \][/tex]
[tex]\[ 1400 = -400 + b \][/tex]
[tex]\[ b = 1400 + 400 = 1800 \][/tex]
5. Conclusion:
The rate of change is [tex]\( -200 \)[/tex] feet per hour, and the peak is at an elevation of [tex]\( 1800 \)[/tex] feet.
Hence, in a function for this situation, the rate of change is [tex]\(-200\)[/tex] feet per hour and the peak is at an elevation of [tex]\( 1800 \)[/tex] feet.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.