Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's go through the steps Melanie took and identify where the error occurred.
### Step 1
Melanie's initial expression is:
[tex]\[ \frac{\cot(x)}{\frac{1}{\sec(x)}} \][/tex]
First, let's rewrite cotangent and secant in terms of sine and cosine:
[tex]\[ \cot(x) = \frac{\cos(x)}{\sin(x)} \quad \text{and} \quad \sec(x) = \frac{1}{\cos(x)} \][/tex]
Rewriting the expression:
[tex]\[ \frac{\cot(x)}{\frac{1}{\sec(x)}} = \frac{\frac{\cos(x)}{\sin(x)}}{\frac{1}{\frac{1}{\cos(x)}}} = \frac{\frac{\cos(x)}{\sin(x)}}{\cos(x)} \][/tex]
This matches Melanie's Step 1:
[tex]\[ \frac{\left(\frac{\cos(x)}{\sin(x)}\right)}{(\cos(x))} \][/tex]
So, Step 1 is correct.
### Step 2
Next, we simplify the fraction:
[tex]\[ \frac{\frac{\cos(x)}{\sin(x)}}{\cos(x)} = \frac{\cos(x)}{\sin(x)} \cdot \frac{1}{\cos(x)} \][/tex]
This matches Melanie’s Step 2:
[tex]\[ \frac{\cos(x)}{\sin(x)} \cdot \frac{1}{\cos(x)} \][/tex]
Step 2 is also correct.
### Step 3
Now, we can simplify the product:
[tex]\[ \frac{\cos(x)}{\sin(x)} \cdot \frac{1}{\cos(x)} = \frac{1}{\sin(x)} \][/tex]
This matches Melanie's Step 3:
[tex]\[ \frac{1}{\sin(x)} \][/tex]
Step 3 is correct.
### Step 4
Finally, Melanie simplifies:
[tex]\[ \frac{1}{\sin(x)} \to \tan(x) \][/tex]
However, this step contains the mistake. The correct simplification of [tex]\(\frac{1}{\sin(x)}\)[/tex] is actually:
[tex]\[ \frac{1}{\sin(x)} = \csc(x) \][/tex]
not [tex]\(\tan(x)\)[/tex].
### Conclusion
Melanie made the first error in Step 4. The expression she should have written in that step is:
[tex]\[ \csc(x) \][/tex]
### Step 1
Melanie's initial expression is:
[tex]\[ \frac{\cot(x)}{\frac{1}{\sec(x)}} \][/tex]
First, let's rewrite cotangent and secant in terms of sine and cosine:
[tex]\[ \cot(x) = \frac{\cos(x)}{\sin(x)} \quad \text{and} \quad \sec(x) = \frac{1}{\cos(x)} \][/tex]
Rewriting the expression:
[tex]\[ \frac{\cot(x)}{\frac{1}{\sec(x)}} = \frac{\frac{\cos(x)}{\sin(x)}}{\frac{1}{\frac{1}{\cos(x)}}} = \frac{\frac{\cos(x)}{\sin(x)}}{\cos(x)} \][/tex]
This matches Melanie's Step 1:
[tex]\[ \frac{\left(\frac{\cos(x)}{\sin(x)}\right)}{(\cos(x))} \][/tex]
So, Step 1 is correct.
### Step 2
Next, we simplify the fraction:
[tex]\[ \frac{\frac{\cos(x)}{\sin(x)}}{\cos(x)} = \frac{\cos(x)}{\sin(x)} \cdot \frac{1}{\cos(x)} \][/tex]
This matches Melanie’s Step 2:
[tex]\[ \frac{\cos(x)}{\sin(x)} \cdot \frac{1}{\cos(x)} \][/tex]
Step 2 is also correct.
### Step 3
Now, we can simplify the product:
[tex]\[ \frac{\cos(x)}{\sin(x)} \cdot \frac{1}{\cos(x)} = \frac{1}{\sin(x)} \][/tex]
This matches Melanie's Step 3:
[tex]\[ \frac{1}{\sin(x)} \][/tex]
Step 3 is correct.
### Step 4
Finally, Melanie simplifies:
[tex]\[ \frac{1}{\sin(x)} \to \tan(x) \][/tex]
However, this step contains the mistake. The correct simplification of [tex]\(\frac{1}{\sin(x)}\)[/tex] is actually:
[tex]\[ \frac{1}{\sin(x)} = \csc(x) \][/tex]
not [tex]\(\tan(x)\)[/tex].
### Conclusion
Melanie made the first error in Step 4. The expression she should have written in that step is:
[tex]\[ \csc(x) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.