Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to determine the correct ratio of the length of the longer leg of a [tex]$30^\circ$[/tex]-[tex]$60^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle to the length of its hypotenuse. Here's the step-by-step approach:
1. Understand the properties of a [tex]$30^\circ$[/tex]-[tex]$60^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle:
- The sides of a [tex]$30^\circ$[/tex]-[tex]$60^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle are in the ratio [tex]\( 1 : \sqrt{3} : 2 \)[/tex].
- Specifically, if the shorter leg (opposite the [tex]$30^\circ$[/tex] angle) is [tex]\( x \)[/tex]:
- The longer leg (opposite the [tex]$60^\circ$[/tex] angle) is [tex]\( x \sqrt{3} \)[/tex].
- The hypotenuse (opposite the [tex]$90^\circ$[/tex] angle) is [tex]\( 2x \)[/tex].
2. Determine the ratio of the longer leg to the hypotenuse:
- The longer leg is [tex]\( x \sqrt{3} \)[/tex] and the hypotenuse is [tex]\( 2x \)[/tex].
- Therefore, the ratio of the longer leg to the hypotenuse is: [tex]\( \frac{x \sqrt{3}}{2x} = \frac{\sqrt{3}}{2} \)[/tex].
Hence, we are looking for the ratio [tex]\( \sqrt{3} : 2 \)[/tex] among the provided options.
3. Evaluate each given ratio:
- Option A [tex]\( \sqrt{3}: 2 \)[/tex]: This is exactly the value we are looking for.
- Option B [tex]\( 2: 3 \sqrt{5} \)[/tex]: This is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
- Option C [tex]\( 1: \sqrt{2} \)[/tex]: This is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
- Option D [tex]\( \sqrt{2}: \sqrt{3} \)[/tex]: This is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
- Option E [tex]\( 2: 2 \sqrt{2} \)[/tex]: This can be simplified to [tex]\( 1: \sqrt{2} \)[/tex], but this is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
- Option F [tex]\( 3: 2 \sqrt{3} \)[/tex]: This is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
4. Validate our options:
- The only option that matches [tex]\( \sqrt{3} : 2 \)[/tex] is Option A.
Therefore, the correct ratio of the length of the longer leg of a [tex]$30^\circ$[/tex]-[tex]$60^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle to the length of its hypotenuse is given by:
A. [tex]\(\sqrt{3} : 2\)[/tex]
1. Understand the properties of a [tex]$30^\circ$[/tex]-[tex]$60^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle:
- The sides of a [tex]$30^\circ$[/tex]-[tex]$60^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle are in the ratio [tex]\( 1 : \sqrt{3} : 2 \)[/tex].
- Specifically, if the shorter leg (opposite the [tex]$30^\circ$[/tex] angle) is [tex]\( x \)[/tex]:
- The longer leg (opposite the [tex]$60^\circ$[/tex] angle) is [tex]\( x \sqrt{3} \)[/tex].
- The hypotenuse (opposite the [tex]$90^\circ$[/tex] angle) is [tex]\( 2x \)[/tex].
2. Determine the ratio of the longer leg to the hypotenuse:
- The longer leg is [tex]\( x \sqrt{3} \)[/tex] and the hypotenuse is [tex]\( 2x \)[/tex].
- Therefore, the ratio of the longer leg to the hypotenuse is: [tex]\( \frac{x \sqrt{3}}{2x} = \frac{\sqrt{3}}{2} \)[/tex].
Hence, we are looking for the ratio [tex]\( \sqrt{3} : 2 \)[/tex] among the provided options.
3. Evaluate each given ratio:
- Option A [tex]\( \sqrt{3}: 2 \)[/tex]: This is exactly the value we are looking for.
- Option B [tex]\( 2: 3 \sqrt{5} \)[/tex]: This is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
- Option C [tex]\( 1: \sqrt{2} \)[/tex]: This is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
- Option D [tex]\( \sqrt{2}: \sqrt{3} \)[/tex]: This is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
- Option E [tex]\( 2: 2 \sqrt{2} \)[/tex]: This can be simplified to [tex]\( 1: \sqrt{2} \)[/tex], but this is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
- Option F [tex]\( 3: 2 \sqrt{3} \)[/tex]: This is not the same as [tex]\( \sqrt{3}: 2 \)[/tex].
4. Validate our options:
- The only option that matches [tex]\( \sqrt{3} : 2 \)[/tex] is Option A.
Therefore, the correct ratio of the length of the longer leg of a [tex]$30^\circ$[/tex]-[tex]$60^\circ$[/tex]-[tex]$90^\circ$[/tex] triangle to the length of its hypotenuse is given by:
A. [tex]\(\sqrt{3} : 2\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.