Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which gas has the higher effusion rate, we can apply Graham's Law of Effusion. Graham's Law states that the rate of effusion of a gas is inversely proportional to the square root of its molar mass. In simpler terms, the lighter the gas (lower molar mass), the faster it effuses.
1. Determine the molar masses of the gases:
- Molar mass of [tex]\( H_2S \)[/tex] (Hydrogen Sulfide):
The atomic masses are approximately:
- Hydrogen (H): 1.01 g/mol
- Sulfur (S): 32.07 g/mol
So, the molar mass of [tex]\( H_2S \)[/tex]:
[tex]\[ \text{Molar mass } H_2S = 2 \times 1.01 + 32.07 = 34.08 \text{ g/mol} \][/tex]
- Molar mass of [tex]\( NH_3 \)[/tex] (Ammonia):
The atomic masses are approximately:
- Nitrogen (N): 14.01 g/mol
- Hydrogen (H): 1.01 g/mol
So, the molar mass of [tex]\( NH_3 \)[/tex]:
[tex]\[ \text{Molar mass } NH_3 = 1 \times 14.01 + 3 \times 1.01 = 17.03 \text{ g/mol} \][/tex]
2. Apply Graham's Law:
Graham's Law formula is given by:
[tex]\[ \frac{\text{Rate of effusion of gas 1}}{\text{Rate of effusion of gas 2}} = \sqrt{\frac{\text{Molar mass of gas 2}}{\text{Molar mass of gas 1}}} \][/tex]
3. Calculate the effusion rates:
- For [tex]\( H_2S \)[/tex]:
[tex]\[ \text{Rate of effusion of } H_2S = \frac{1}{\sqrt{\text{Molar mass of } H_2S}} = \frac{1}{\sqrt{34.08}} \approx 0.171 \][/tex]
- For [tex]\( NH_3 \)[/tex]:
[tex]\[ \text{Rate of effusion of } NH_3 = \frac{1}{\sqrt{\text{Molar mass of } NH_3}} = \frac{1}{\sqrt{17.03}} \approx 0.242 \][/tex]
4. Compare the effusion rates:
From the calculated rates:
[tex]\[ 0.171 \text{ for } H_2S \quad \text{ and } \quad 0.242 \text{ for } NH_3 \][/tex]
5. Conclusion:
Since [tex]\( 0.242 > 0.171 \)[/tex], ammonia [tex]\( (NH_3) \)[/tex] has a higher effusion rate than hydrogen sulfide [tex]\( (H_2S) \)[/tex].
Therefore, the gas with the higher effusion rate is [tex]\( NH_3 \)[/tex].
1. Determine the molar masses of the gases:
- Molar mass of [tex]\( H_2S \)[/tex] (Hydrogen Sulfide):
The atomic masses are approximately:
- Hydrogen (H): 1.01 g/mol
- Sulfur (S): 32.07 g/mol
So, the molar mass of [tex]\( H_2S \)[/tex]:
[tex]\[ \text{Molar mass } H_2S = 2 \times 1.01 + 32.07 = 34.08 \text{ g/mol} \][/tex]
- Molar mass of [tex]\( NH_3 \)[/tex] (Ammonia):
The atomic masses are approximately:
- Nitrogen (N): 14.01 g/mol
- Hydrogen (H): 1.01 g/mol
So, the molar mass of [tex]\( NH_3 \)[/tex]:
[tex]\[ \text{Molar mass } NH_3 = 1 \times 14.01 + 3 \times 1.01 = 17.03 \text{ g/mol} \][/tex]
2. Apply Graham's Law:
Graham's Law formula is given by:
[tex]\[ \frac{\text{Rate of effusion of gas 1}}{\text{Rate of effusion of gas 2}} = \sqrt{\frac{\text{Molar mass of gas 2}}{\text{Molar mass of gas 1}}} \][/tex]
3. Calculate the effusion rates:
- For [tex]\( H_2S \)[/tex]:
[tex]\[ \text{Rate of effusion of } H_2S = \frac{1}{\sqrt{\text{Molar mass of } H_2S}} = \frac{1}{\sqrt{34.08}} \approx 0.171 \][/tex]
- For [tex]\( NH_3 \)[/tex]:
[tex]\[ \text{Rate of effusion of } NH_3 = \frac{1}{\sqrt{\text{Molar mass of } NH_3}} = \frac{1}{\sqrt{17.03}} \approx 0.242 \][/tex]
4. Compare the effusion rates:
From the calculated rates:
[tex]\[ 0.171 \text{ for } H_2S \quad \text{ and } \quad 0.242 \text{ for } NH_3 \][/tex]
5. Conclusion:
Since [tex]\( 0.242 > 0.171 \)[/tex], ammonia [tex]\( (NH_3) \)[/tex] has a higher effusion rate than hydrogen sulfide [tex]\( (H_2S) \)[/tex].
Therefore, the gas with the higher effusion rate is [tex]\( NH_3 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.