Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the sum of the infinite series
[tex]\[ \frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \frac{2}{3^5} + \frac{3}{3^6} + \ldots \][/tex]
we can observe that it alternates between terms of the form [tex]\(\frac{2}{3^n}\)[/tex] and [tex]\(\frac{3}{3^n}\)[/tex].
To simplify, we can split this into two separate geometric series:
1. Series 1: [tex]\(\frac{2}{3} + \frac{2}{3^3} + \frac{2}{3^5} + \ldots\)[/tex]
2. Series 2: [tex]\(\frac{3}{3^2} + \frac{3}{3^4} + \frac{3}{3^6} + \ldots\)[/tex]
### Analyzing Series 1:
Let's start with Series 1:
[tex]\[ \frac{2}{3} + \frac{2}{3^3} + \frac{2}{3^5} + \ldots \][/tex]
We can factor out the common factor of 2 from each term, giving:
[tex]\[ 2 \left(\frac{1}{3} + \frac{1}{3^3} + \frac{1}{3^5} + \ldots\right) \][/tex]
This is a geometric series where the first term [tex]\(a_1 = \frac{2}{3}\)[/tex] and the common ratio [tex]\(r_1 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)[/tex]. The sum [tex]\(S_1\)[/tex] of an infinite geometric series with first term [tex]\(a\)[/tex] and common ratio [tex]\(r\)[/tex] (where [tex]\(|r| < 1\)[/tex]) is given by:
[tex]\[ S = \frac{a}{1-r} \][/tex]
Thus, for Series 1:
[tex]\[ a_1 = \frac{2}{3}, \quad r_1 = \frac{1}{9} \][/tex]
[tex]\[ S_1 = \frac{\frac{2}{3}}{1 - \frac{1}{9}} = \frac{\frac{2}{3}}{\frac{8}{9}} = \frac{2}{3} \cdot \frac{9}{8} = \frac{2 \cdot 9}{3 \cdot 8} = \frac{18}{24} = \frac{3}{4} = 0.75 \][/tex]
### Analyzing Series 2:
Now, let's consider Series 2:
[tex]\[ \frac{3}{3^2} + \frac{3}{3^4} + \frac{3}{3^6} + \ldots \][/tex]
Similarly, we can factor out the common factor of 3 from each term, yielding:
[tex]\[ 3 \left(\frac{1}{3^2} + \frac{1}{3^4} + \frac{1}{3^6} + \ldots\right) \][/tex]
This is another geometric series where the first term [tex]\(a_2 = \frac{3}{9} = \frac{1}{3}\)[/tex] and the common ratio [tex]\(r_2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)[/tex]. Thus:
[tex]\[ a_2 = \frac{1}{3}, \quad r_2 = \frac{1}{9} \][/tex]
[tex]\[ S_2 = \frac{\frac{1}{3}}{1 - \frac{1}{9}} = \frac{\frac{1}{3}}{\frac{8}{9}} = \frac{1}{3} \cdot \frac{9}{8} = \frac{9}{24} = \frac{3}{8} = 0.375 \][/tex]
### Adding the Two Series:
Finally, to find the total sum of the original series, we add the sums of the two separate series:
[tex]\[ S_{\text{total}} = S_1 + S_2 = 0.75 + 0.375 = 1.125 \][/tex]
Thus, the sum of the infinite series [tex]\(\frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \frac{2}{3^5} + \frac{3}{3^6} + \ldots\)[/tex] is
[tex]\[ \boxed{1.125} \][/tex]
[tex]\[ \frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \frac{2}{3^5} + \frac{3}{3^6} + \ldots \][/tex]
we can observe that it alternates between terms of the form [tex]\(\frac{2}{3^n}\)[/tex] and [tex]\(\frac{3}{3^n}\)[/tex].
To simplify, we can split this into two separate geometric series:
1. Series 1: [tex]\(\frac{2}{3} + \frac{2}{3^3} + \frac{2}{3^5} + \ldots\)[/tex]
2. Series 2: [tex]\(\frac{3}{3^2} + \frac{3}{3^4} + \frac{3}{3^6} + \ldots\)[/tex]
### Analyzing Series 1:
Let's start with Series 1:
[tex]\[ \frac{2}{3} + \frac{2}{3^3} + \frac{2}{3^5} + \ldots \][/tex]
We can factor out the common factor of 2 from each term, giving:
[tex]\[ 2 \left(\frac{1}{3} + \frac{1}{3^3} + \frac{1}{3^5} + \ldots\right) \][/tex]
This is a geometric series where the first term [tex]\(a_1 = \frac{2}{3}\)[/tex] and the common ratio [tex]\(r_1 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)[/tex]. The sum [tex]\(S_1\)[/tex] of an infinite geometric series with first term [tex]\(a\)[/tex] and common ratio [tex]\(r\)[/tex] (where [tex]\(|r| < 1\)[/tex]) is given by:
[tex]\[ S = \frac{a}{1-r} \][/tex]
Thus, for Series 1:
[tex]\[ a_1 = \frac{2}{3}, \quad r_1 = \frac{1}{9} \][/tex]
[tex]\[ S_1 = \frac{\frac{2}{3}}{1 - \frac{1}{9}} = \frac{\frac{2}{3}}{\frac{8}{9}} = \frac{2}{3} \cdot \frac{9}{8} = \frac{2 \cdot 9}{3 \cdot 8} = \frac{18}{24} = \frac{3}{4} = 0.75 \][/tex]
### Analyzing Series 2:
Now, let's consider Series 2:
[tex]\[ \frac{3}{3^2} + \frac{3}{3^4} + \frac{3}{3^6} + \ldots \][/tex]
Similarly, we can factor out the common factor of 3 from each term, yielding:
[tex]\[ 3 \left(\frac{1}{3^2} + \frac{1}{3^4} + \frac{1}{3^6} + \ldots\right) \][/tex]
This is another geometric series where the first term [tex]\(a_2 = \frac{3}{9} = \frac{1}{3}\)[/tex] and the common ratio [tex]\(r_2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}\)[/tex]. Thus:
[tex]\[ a_2 = \frac{1}{3}, \quad r_2 = \frac{1}{9} \][/tex]
[tex]\[ S_2 = \frac{\frac{1}{3}}{1 - \frac{1}{9}} = \frac{\frac{1}{3}}{\frac{8}{9}} = \frac{1}{3} \cdot \frac{9}{8} = \frac{9}{24} = \frac{3}{8} = 0.375 \][/tex]
### Adding the Two Series:
Finally, to find the total sum of the original series, we add the sums of the two separate series:
[tex]\[ S_{\text{total}} = S_1 + S_2 = 0.75 + 0.375 = 1.125 \][/tex]
Thus, the sum of the infinite series [tex]\(\frac{2}{3} + \frac{3}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \frac{2}{3^5} + \frac{3}{3^6} + \ldots\)[/tex] is
[tex]\[ \boxed{1.125} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.